All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Synergistic Use of Multispectral Data and Crop Growth Modelling for Spatial and Temporal Evapotranspiration Estimations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00543530" target="_blank" >RIV/86652079:_____/21:00543530 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2072-4292/13/11/2138" target="_blank" >https://www.mdpi.com/2072-4292/13/11/2138</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs13112138" target="_blank" >10.3390/rs13112138</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Synergistic Use of Multispectral Data and Crop Growth Modelling for Spatial and Temporal Evapotranspiration Estimations

  • Original language description

    The aim of this research is to explore the analysis of methods allowing a synergetic use of information exchange between Earth Observation (EO) data and growth models in order to provide high spatial and temporal resolution actual evapotranspiration predictions. An assimilation method based on the Ensemble Kalman Filter algorithm allows for combining Sentinel-2 data with a new version of Simple Algorithm For Yield (SAFY_swb) that considers the effect of the water balance on yield and estimates the daily trend of evapotranspiration (ET). Our study is relevant in the context of demonstrating the effectiveness and necessity of satellite missions such as Land Surface Temperature Monitoring (LSTM), to provide high spatial and temporal resolution data for agriculture. The proposed method addresses the problem both from a spatial point of view, providing maps of the areas of interest of the main biophysical quantities of vegetation (LAI, biomass, yield and actual Evapotranspiration), and from a temporal point of view, providing a simulation on a daily basis of the aforementioned variables. The assimilation efficiency was initially evaluated with a synthetic, large and heterogeneous dataset, reaching values of 70% even for high measurement errors of the assimilated variable. Subsequently, the method was tested in a case study in central Italy, allowing estimates of the daily Actual Evapotranspiration with a relative RMSE of 18%. The novelty of this research is in proposing a solution that partially solves the main problems related to the synergistic use of EO data with crop growth models, such as the difficult calibration of initial parameters, the lack of frequent high-resolution data or the high computational cost of data assimilation methods. It opens the way to future developments, such as the use of simultaneous assimilation of multiple variables, to deeper investigations using more specific datasets and exploiting the advanced tools.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    25

  • Pages from-to

    2138

  • UT code for WoS article

    000660619600001

  • EID of the result in the Scopus database

    2-s2.0-85107896635