All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Diffuse solar radiation and canopy photosynthesis in a changing environment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00548107" target="_blank" >RIV/86652079:_____/21:00548107 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0168192321003701?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168192321003701?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.agrformet.2021.108684" target="_blank" >10.1016/j.agrformet.2021.108684</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Diffuse solar radiation and canopy photosynthesis in a changing environment

  • Original language description

    The sunlight received by plants is affected by cloudiness and pollution. Future changes in cloud cover will differ among regions, while aerosol concentrations are expected to continue increasing globally as a result of wildfires, fossil fuel combustion, and industrial pollution. Clouds and aerosols increase the diffuse fraction and modify the spectral composition of incident solar radiation, and both will affect photosynthesis and terrestrial ecosystem productivity. Thus, an assessment of how canopy and leaf level processes respond to these changes is needed as part of accurately forecasting future global carbon assimilation. To review these processes and their implications,first, we discuss the physical basis of the effect of clouds and aerosols on solar radiation as it penetrates the atmosphere second, we consider how direct and diffuse radiation are absorbed and transmitted by plant canopies and their leaves and finally, we assess the consequences for photosynthesis at the canopy and ecosystem levels. Photobiology will be affected at the atmospheric level by a shift in spectral composition toward shorter or longer wavelengths under clouds or aerosols, respectively, due to different scattering. Changes in the microclimate and spectral composition of radiation due to an enhanced diffuse fraction also depend on the acclimation of canopy architectural and physiological traits, such as leaf area index, orientation, and clumping. Together with an enhancement of light-use efficiency, this makes the effect of diffuse solar radiation on canopy photosynthesis a multilayered phenomenon, requiring experimental testing to capture those complex interactions that will determine whether it produces the persistent enhancement in carbon assimilation that land-surface models currently predict.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10510 - Climatic research

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Agricultural and Forest Meteorology

  • ISSN

    0168-1923

  • e-ISSN

    1873-2240

  • Volume of the periodical

    311

  • Issue of the periodical within the volume

    OCT

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    108684

  • UT code for WoS article

    000710990900007

  • EID of the result in the Scopus database

    2-s2.0-85118760473