Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00550777" target="_blank" >RIV/86652079:_____/21:00550777 - isvavai.cz</a>
Alternative codes found
RIV/62156489:43410/21:43920488
Result on the web
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259054" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259054</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0259054" target="_blank" >10.1371/journal.pone.0259054</a>
Alternative languages
Result language
angličtina
Original language name
Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2
Original language description
Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings-and larger, more efficient conduits leading to increased hydraulic conductance-were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PLoS ONE
ISSN
1932-6203
e-ISSN
1932-6203
Volume of the periodical
16
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
e0259054
UT code for WoS article
000733392900002
EID of the result in the Scopus database
2-s2.0-85117951253