All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tree water uptake enhances nitrogen acquisition in a fertilized boreal forest but not under nitrogen-poor conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00559316" target="_blank" >RIV/86652079:_____/21:00559316 - isvavai.cz</a>

  • Result on the web

    <a href="https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17578" target="_blank" >https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17578</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/nph.17578" target="_blank" >10.1111/nph.17578</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tree water uptake enhances nitrogen acquisition in a fertilized boreal forest but not under nitrogen-poor conditions

  • Original language description

    Understanding how plant water uptake interacts with acquisition of soil nitrogen (N) and other nutrients is fundamental for predicting plant responses to a changing environment, but it is an area where models disagree. We present a novel isotopic labelling approach which reveals spatial patterns of water and N uptake, and their interaction, by trees. The stable isotopes N-15 and H-2 were applied to a small area of the forest floor in stands with high and low soil N availability. Uptake by surrounding trees was measured. The sensitivity of N acquisition to water uptake was quantified by statistical modelling. Trees in the high-N stand acquired twice as much N-15 as in the low-N stand and around half of their N uptake was dependent on water uptake (H-2 enrichment). By contrast, in the low-N stand there was no positive effect of water uptake on N uptake. We conclude that tree N acquisition was only marginally dependent on water flux toward the root surface under low-N conditions whereas under high-N conditions, the water-associated N uptake was substantial. The results suggest a fundamental shift in N acquisition strategy under high-N conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    New Phytologist

  • ISSN

    0028-646X

  • e-ISSN

    1469-8137

  • Volume of the periodical

    232

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    113-122

  • UT code for WoS article

    000675530300001

  • EID of the result in the Scopus database

    2-s2.0-85110986635