All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00555550" target="_blank" >RIV/86652079:_____/22:00555550 - isvavai.cz</a>

  • Result on the web

    <a href="https://acp.copernicus.org/articles/22/2569/2022/acp-22-2569-2022-discussion.html" target="_blank" >https://acp.copernicus.org/articles/22/2569/2022/acp-22-2569-2022-discussion.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/acp-22-2569-2022" target="_blank" >10.5194/acp-22-2569-2022</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest

  • Original language description

    The seasonality and interannual variability of terrestrial carbonyl sulfide (COS) fluxes are poorly constrained. We present the first easy-to-use parameterization for the net COS forest sink based on the longest existing eddy covariance record from a boreal pine forest, covering 32 months over 5 years. Fluxes from hourly to yearly scales are reported, with the aim of revealing controlling factors and the level of interannual variability. The parameterization is based on the photosynthetically active radiation, vapor pressure deficit, air temperature, and leaf area index. Wavelet analysis of the ecosystem fluxes confirmed earlier findings from branch-level fluxes at the same site and revealed a 3 h lag between COS uptake and air temperature maxima at the daily scale, whereas no lag between radiation and COS flux was found. The spring recovery of the flux after the winter dormancy period was mostly governed by air temperature, and the onset of the uptake varied by 2 weeks. For the first time, we report a significant reduction in ecosystem-scale COS uptake under a large water vapor pressure deficit in summer. The maximum monthly and weekly median COS uptake varied by 26% and 20% between years, respectively. The timing of the latter varied by 6 weeks. The fraction of the nocturnal uptake remained below 21% of the total COS uptake. We observed the growing season (April-August) average net flux of COS totaling58 :0 gS ha(-1) with 37% interannual variability. The long-term flux observations were scaled up to evergreen needleleaf forests (ENFs) in the whole boreal region using the Simple Biosphere Model Version 4 (SiB4). The observations were closely simulated using SiB4 meteorological drivers and phenology. The total COS uptake by boreal ENFs was in line with a missing COS sink at high latitudes pointed out in earlier studies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Atmospheric Chemistry and Physics

  • ISSN

    1680-7316

  • e-ISSN

    1680-7324

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    2569-2584

  • UT code for WoS article

    000763280100001

  • EID of the result in the Scopus database

    2-s2.0-85125877077