Interactive effects of nitrogen, UV and PAR on barley morphology and biochemistry are associated with the leaf C:N balance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00557006" target="_blank" >RIV/86652079:_____/22:00557006 - isvavai.cz</a>
Alternative codes found
RIV/62156489:43210/22:43921093
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0981942822000080?dgcid=author" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0981942822000080?dgcid=author</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.plaphy.2022.01.006" target="_blank" >10.1016/j.plaphy.2022.01.006</a>
Alternative languages
Result language
angličtina
Original language name
Interactive effects of nitrogen, UV and PAR on barley morphology and biochemistry are associated with the leaf C:N balance
Original language description
Environmental conditions to which plants acclimate prior exposure to abiotic or biotic stressors can greatly affect their subsequent resilience. This may have a significant impact on the response to ongoing climate change and can be useful for increasing the food security under adverse weather conditions associated with climate change. Within this study, we tested the hypothesis that plant morphological and biochemical acclimation to radiation conditions and nitrogen (N) availability is closely linked with carbon (C) and N balance. Four barley (Hordeum vulgare) varieties, differing in their morphological characteristics and sensitivity to photooxidative stress, were grown at two levels of N supply and four radiation regimes combining distinct levels of ultraviolet (UV) and photosynthetically active radiation (PAR). Changes in root and shoot morphology, accumulation of phenolic compounds, amino acids, and sugars were studied together with the analysis of C and N content in leaves. Both UV and PAR reduced leaf length and increased root-to-shoot ratio (R:S). Such effect was more pronounced under high N availability. High N supply reduced R:S, but this effect showed significant interactions with UV and PAR, and also with barley variety. Changes in R:S were positively related to C:N ratio in leaves that varied in response to both N availability and radiation treatments. UV radiation, particularly in combination with high PAR intensity, led to increases in most phenolic compounds (particularly flavones such as saponarin, homoorientin and isovitexin) which was also closely associated with changes in C:N ratio, while specifically phenolic acids (vanillic and syringic acids) decreased under high levels of UV and PAR, and hydroxycinnamic acids responded positively mainly to PAR. Although high N availability generally reduced the accumulation of phenolic compounds, this effect was genotype-specific and modulated by the radiation regime. A similar antagonistic effect of radiation treatment and N availability was also found for the accumulation of sugars (pentoses), resulting in a close relationship between the accumulation of pentoses and C:N ratio. The accumulation of most amino acids, in contrary to phenolic compounds, increases at high N and is also stimulated by high PAR and UV intensities. We conclude that radiation conditions and N availability have opposite effects on plant morphology and accumulation of most phenolic compounds and modulate the amino acid and sugar metabolism. Strong associations of these responses with changes in C:N ratio indicates that plant stoichiometry integrates acclimation processes and induction of relevant defence mechanisms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Plant Physiology and Biochemistry
ISSN
0981-9428
e-ISSN
—
Volume of the periodical
172
Issue of the periodical within the volume
FEB
Country of publishing house
FR - FRANCE
Number of pages
14
Pages from-to
111-124
UT code for WoS article
000783430200004
EID of the result in the Scopus database
2-s2.0-85123102581