All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00557109" target="_blank" >RIV/86652079:_____/22:00557109 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0176161722000153?via%3Dihub#" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0176161722000153?via%3Dihub#</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jplph.2022.153629" target="_blank" >10.1016/j.jplph.2022.153629</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses

  • Original language description

    Plant growth-promoting rhizobacteria (PGPR) are known for exerting beneficial effects on plant growth and tolerance to plant pathogens. However, their specific role in mediating protection against abiotic stress remains underexplored. The aim of this study was to characterise the ability of the cytokinin-producing beneficial bac-terium Pseudomonas fluorescens G20-18 to enhance tomato growth and boost tolerance to drought stress. Tomato seedlings were root inoculated and their growth and physiological and molecular responses assessed under well-watered conditions and also in response to progressive drought stress and a subsequent recovery period. Root inoculation with G20-18 had a significant positive impact on tomato growth. Furthermore, G20-18 inoculated and drought-stressed plants showed higher leaf chlorophyll and abscisic acid (ABA) content and stomatal closure than non-inoculated controls. Root inoculation also increased the activity of different carbohydrate metabolism enzymes, which are important for root and leaf growth and development in drought stressed plants. A significant increase in the activity of different antioxidant enzymes and total antioxidant capacity correlated with elevated levels of relevant secondary metabolites, such as phenolics, anthocyanins and flavonoids. RNA sequencing revealed distinct qualitative and quantitative differences in gene regulation in response to G20-18. Notably, the number of genes differentially regulated in response to G20-18 was approximately sevenfold higher during drought stress, indicating that root inoculation with the bacteria primed the plants for a much stronger tran-scriptionally regulated systemic drought stress response. The regulated genes are related to phenylalanine metabolism and other key processes linked to plant growth, development and drought stress resilience. A role of the ability of G20-18 to produce the plant hormone cytokinin for interaction with tomato was established by the cytokinin-deficient biosynthesis mutants CNT1 and CNT2. In comparison with G20-18, the inoculation of plants with CNT1 resulted in a reduced number of differentially regulated genes. The relative change was most prominent under well-watered conditions with a 85 % reduction, corresponding to 462 genes. However, under drought conditions the absolute number of differentially regulated genes was reduced by even 2219 in response to the CNT1 mutant. The relevance of the ability of G20-18 to produce cytokinins for interaction with plants was also evident from differences in growth and specific cell and ecophysiological parameters in response to CNT1 and CNT2. These findings provide novel insights about G20-18's ability to improve drought stress responses and the role of interkingdom signalling by bacterial-derived cytokinins, and contribute to enhance the robustness of the practical application of these microorganisms to improve crop resilience in agricultural production.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/LO1415" target="_blank" >LO1415: CzechGlobe 2020 – Development of the Centre of Global Climate Change Impacts Studies</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Plant Physiology

  • ISSN

    0176-1617

  • e-ISSN

    1618-1328

  • Volume of the periodical

    270

  • Issue of the periodical within the volume

    JAN

  • Country of publishing house

    PT - PORTUGAL

  • Number of pages

    15

  • Pages from-to

    153629

  • UT code for WoS article

    000780367400001

  • EID of the result in the Scopus database

    2-s2.0-85124326740