A seven-years based characterisation of aerosol light scattering properties at central european rural site: variability and source apportionment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00563760" target="_blank" >RIV/86652079:_____/22:00563760 - isvavai.cz</a>
Alternative codes found
RIV/00020699:_____/23:N0000013
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A seven-years based characterisation of aerosol light scattering properties at central european rural site: variability and source apportionment
Original language description
Atmospheric aerosols have a significant impact on the radiative forcing of Earth's climate, either ndirectly through aerosol-radiative interactions (ARIs), i.e., scattering or absorption of incoming solar and noutgoing infrared radiation, or indirectly through aerosol-cloud interactions (ACIs) (Boucher, 2015, IPCC, n2013, Luoma et al., 2019, Ramanathan et al., 2001). The aerosol radiative forcing of the direct effect nconsists of a warming effect and a cooling effect (Boucher et al., 2013, Charlson et al., 1992, IPCC et al., n2013). The predominant cooling effect results from the scattering of radiation by certain atmospheric naerosols (including sea salts, nitrates, sulfates, mineral and organic matter, etc.) that reduce the amount of nsolar radiation reaching the Earth's surface (IPCC, 2013). This phenomenon offsets the greenhouse effect nand alters the radiation balance (Pandolfi et al., 2018). According to a number of studies, radiative forcing nby aerosols remains one of the main sources of uncertainty in a climate model estimate due to the strong nspatial and temporal variations in chemical and physical properties, short lifetime compared to greenhouse ngasses, and diversity of aerosol sources (Boucher, 2015, Charlson et al., 1992, Lee et al., 2016, Luoma et nal., 2019). These studies are important for a better understanding of local and long-range transport of both nanthropogenic pollutants and natural sources and for unbiased long-term trends. Therefore, we focused on nthe temporal variations and sources of light-scattering aerosols at a rural site in central Europe. The total nlight scattering (σsp) and backscattering (σbsp) coefficients and associated calculated optical properties such nas the Ångstrӧm exponent (SAE), backscattering ratio (b), and asymmetry factor (g) are characterized nconsidering different time scales (annual, seasonal, monthly, weekly, and diurnal).
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10509 - Meteorology and atmospheric sciences
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů