Forest growth responds more to air pollution than soil acidification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F23%3A00571049" target="_blank" >RIV/86652079:_____/23:00571049 - isvavai.cz</a>
Alternative codes found
RIV/62156489:43410/23:43923232
Result on the web
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256976" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256976</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0256976" target="_blank" >10.1371/journal.pone.0256976</a>
Alternative languages
Result language
angličtina
Original language name
Forest growth responds more to air pollution than soil acidification
Original language description
The forests of central Europe have undergone remarkable transitions in the past 40 years as air quality has improved dramatically. Retrospective analysis of Norway spruce (Picea abies) tree rings in the Czech Republic shows that air pollution (e.g. SO2 concentrations, high acidic deposition to the forest canopy) plays a dominant role in driving forest health. Extensive soil acidification occurred in the highly polluted ,,Black Triangle,, in Central Europe, and upper mineral soils are still acidified. In contrast, acidic atmospheric deposition declined by 80% and atmospheric SO2 concentration by 90% between the late 1980s and 2010s. In this study we oserved that annual tree ring width (TRW) declined in the 1970s and subsequently recovered in the 1990s, tracking SO2 concentrations closely. Furthermore, recovery of TRW was similar in unlimed and limed stands. Despite large increases in soil base saturation, as well as soil pH, as a result of repeated liming starting in 1981, TRW growth was similar in limed and unlimed plots. TRW recovery was interrupted in 1996 when highly acidic rime (originating from more pronounced decline of alkaline dust than SO2 from local power plants) injured the spruce canopy, but recovered soon to the pre-episode growth. Across the long-term site history, changes in soil chemistry (pH, base saturation, Bc/Al soil solution ratio) cannot explain observed changes in TRW at the two study sites where we tracked soil chemistry. Instead, statistically significant recovery in TRW is linked to the trajectory of annual SO2 concentrations or sulfur deposition at all three stands.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40102 - Forestry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PLoS ONE
ISSN
1932-6203
e-ISSN
1932-6203
Volume of the periodical
18
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
e0256976
UT code for WoS article
000948775000035
EID of the result in the Scopus database
2-s2.0-85149806100