Assessing the potential of synthetic and ex situ airborne laser scanning and ground plot data to train forest biomass models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F23%3A00580072" target="_blank" >RIV/86652079:_____/23:00580072 - isvavai.cz</a>
Result on the web
<a href="https://academic.oup.com/forestry/article-abstract/97/4/512/7458502?redirectedFrom=fulltext&login=false" target="_blank" >https://academic.oup.com/forestry/article-abstract/97/4/512/7458502?redirectedFrom=fulltext&login=false</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/forestry/cpad061" target="_blank" >10.1093/forestry/cpad061</a>
Alternative languages
Result language
angličtina
Original language name
Assessing the potential of synthetic and ex situ airborne laser scanning and ground plot data to train forest biomass models
Original language description
Airborne laser scanning data are increasingly used to predict forest biomass over large areas. Biomass information cannot be derived directly from airborne laser scanning data, therefore, field measurements of forest plots are required to build regression models. We tested whether simulated laser scanning data of virtual forest plots could be used to train biomass models and thereby reduce the amount of field measurements required. We compared the performance of models that were trained with (i) simulated data only, (ii) a combination of simulated and real data, (iii) real data collected from different study sites, and (iv) real data collected from the same study site the model was applied to. We additionally investigated whether using a subset of the simulated data instead of using all simulated data improved model performance. The best matching subset of the simulated data was sampled by selecting the simulated forest plot with the highest correlation of the return height distribution profile for each real forest plot. For comparison, a randomly selected subset was evaluated. Models were tested on four forest sites located in Poland, the Czech Republic, and Canada. Model performance was assessed by root mean squared error (RMSE), squared Pearson correlation coefficient (r$<^>{2}$), and mean error (ME) of observed and predicted biomass. We found that models trained solely with simulated data did not achieve the accuracy of models trained with real data (RMSE increase of 52-122 %, r$<^>{2}$ decrease of 4-18 %). However, model performance improved when only a subset of the simulated data was used (RMSE increase of 21-118 %, r$<^>{2}$ decrease of 5-14 % compared to the real data model), albeit differences in model performance when using the best matching subset compared to using a randomly selected subset were small. Using simulated data for model training always resulted in a strong underprediction of biomass. Extending sparse real training datasets with simulated data decreased RMSE and increased r$<^>{2}$, as long as no more than 12-346 real training samples were available, depending on the study site. For three of the four study sites, models trained with real data collected from other sites outperformed models trained with simulated data and RMSE and r$<^>{2}$ were similar to models trained with data from the respective sites. Our results indicate that simulated data cannot yet replace real data but they can be helpful in some sites to extend training datasets when only a limited amount of real data is available.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20705 - Remote sensing
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forestry
ISSN
0015-752X
e-ISSN
1464-3626
Volume of the periodical
97
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
512-530
UT code for WoS article
001112795900001
EID of the result in the Scopus database
2-s2.0-85201109580