All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reversible single-pulse laser-induced phase change of SbS thin films: multi-physics modeling and experimental demonstrations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F24%3AN0000023" target="_blank" >RIV/CZ______:_____/24:N0000023 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001299599100001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001299599100001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adom.202401214" target="_blank" >10.1002/adom.202401214</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reversible single-pulse laser-induced phase change of SbS thin films: multi-physics modeling and experimental demonstrations

  • Original language description

    Phase change materials (PCMs) have gained a tremendous interest as a means to actively tune nanophotonic devices through the large optical modulation produced by their amorphous to crystalline reversible transition. Recently, materials such as Sb2S3 emerged as particularly promising low loss PCMs, with both large refractive index modulations and transparency in the visible and near-infrared. Controlling the local and reversible phase transition in this material is of major importance for future applications, and an appealing method to do so is to exploit pulsed lasers. Yet, the physics and limits involved in the optical switching of Sb2S3 are not yet well understood. Here, the reversible laser-induced phase transition of Sb2S3 is investigated, focusing specifically on the mechanisms that drive the optically induced amorphization, with multi-physics considerations including the optical and thermal properties of the PCM and its environment. The laser energy threshold for reversibly changing the phase of the PCM is determined through both theoretical analysis and experimental investigation, not only between fully amorphous and crystalline states but also between partially recrystallized states. Then, the non-negligible impact of the material's polycrystallinity and anisotropy on the power thresholds for optical switching is revealed. Finally, the challenges related to laser amorphization of thick Sb2S3 layers are addressed, as well as strategies to overcome them. These results enable a qualitative and quantitative understanding of the physics behind the optically-induced reversible change of phase in Sb2S3 layers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000789" target="_blank" >EF16_019/0000789: Advanced research using high intensity laser produced photons and particles</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ADVANCED OPTICAL MATERIALS

  • ISSN

    2195-1071

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    28

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    2401214

  • UT code for WoS article

    001299599100001

  • EID of the result in the Scopus database

    2-s2.0-85202185644