Filters
Subdominant Solutions of Discrete Equation Delta(k+n)=-p(k)u(k)
Subdominant Solutions of Discrete Equation Delta(k+n)=-p(k)u(k) is considered...
BA - Obecná matematika
- 2004 •
- D
Rok uplatnění
D - Stať ve sborníku
Representation of solutions of discrete delayed system x(k+1)=Ax(k)+Bx(k-m)+f(k)
Representation of solutions of discrete delayed system x(k+1)=Ax(k)+Bx(k-m)+f(k) is discused...
BA - Obecná matematika
- 2006 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Positive solutions of discrete equations Delta u(k+n)=-p(k)u(k)
Positive solutions of discrete equations Delta u(k+n)=-p(k)u(k) is considered...
BA - Obecná matematika
- 2002 •
- D
Rok uplatnění
D - Stať ve sborníku
Remark on positive solutions of discrete equations Delta u(k+n)= -p(k)u(k)
Positive solutions of discrete equations Delta u(k+n)= -p(k)u(k) are considered...
BA - Obecná matematika
- 2005 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Subdominant Solutions of Discrete Equation Delta(k+n)=-p(k)u(k)
Subdominant Solutions of Discrete Equation Delta(k+n)=-p(k)u(k) is considered. Nontrivial illustrative example is given....
BA - Obecná matematika
- 2004 •
- D
Rok uplatnění
D - Stať ve sborníku
Subdominat positive solutions of the discrete equations "Delta(u(k+1))=-p(k)u(k)".
Subdominat positive solutions of the discrete equations "Delta(u(k+1))=-p(k)u(k)" are considered...
BA - Obecná matematika
- 2005 •
- D
Rok uplatnění
D - Stať ve sborníku
Subdominant positive solutions of the discrete equation Delta u(k+n)=-p(k)u(k).
A delayed discrete equation Delta u(k+n)=-p(k)u(k) with positive coefficient p is considered. Sufficient conditions with respect to p are formulated in order to guarantee the existence of positive solutions if ...
BA - Obecná matematika
- 2004 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Existence of a Bounded Solution of a Non-Homogeneous Linear Planar Discrete System
of discrete equations y_1 (k + 1) = p(k)y_1(k) + q(k)y_2 (k) + g_1 (k) , y_2 (k + 1) = −q(k)y_1 (k) + p(k)y_2 (k) + g_2 (k) , where k
Applied mathematics
- 2024 •
- D •
- Link
Rok uplatnění
D - Stať ve sborníku
Výsledek na webu
BOUNDED SOLUTIONS OF A SYSTEM OF TWO DISCRETE EQUATIONS
. Sufficient conditions are derived guaranteeing the existence of a solution y(k) = (y_1(k), y_2(k)), k = a, a + 1, . . . satisfying y_1^2(k) + y_2^2(k) < M, where M of discrete equation...
Applied mathematics
- 2022 •
- O
Rok uplatnění
O - Ostatní výsledky
Solutions of linear discrete systems with a single delay and impulses
The paper considers a delayed system of discrete equations x(k + 1) = Ax(k) + Bx(k − m) + f (k) , k = 0 , 1 , . . . , an initial problem x(k) = ϕ (k), k = −m, . . . , 0 and presc...
Applied mathematics
- 2023 •
- D •
- Link
Rok uplatnění
D - Stať ve sborníku
Výsledek na webu
- 1 - 10 out of 93 739