Filters
Groupoids and the Associative Law VIIB: SH-Groupoids and Simply Generated Congruences
Congruences on groupoids having just one non-associative triple (a,b,a) are investigated. There is constructed groupoid generated by two-element set {a,b} having just one non-associative triple (a...
BA - Obecná matematika
- 2011 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Semigroup Distances of Finite Groupoids
The simplest cases of non-associative groupoids are presented by groupoids (so called SH-groupoids) having just one non-associative (ordered) triple of elements. In this paper only SH-groupoids having the ...
BA - Obecná matematika
- 2014 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Groupoids and the Associative Law VII. (Semigroup Distance of SH-Groupoids)
Szasz-Hájek groupoids are those groupoids that contain just one non-associative (ordered) triple of elements. These groupoids were studied by G. Szász. The present short note is concerned with semigroup distances of SH-grou...
BA - Obecná matematika
- 2006 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Flexible Latin directed triple systems
triple systems. The quasigroups associated with Steiner and Mendelsohn triple systems-607], we studied non-flexible Latin directed triple systems. In this paper we turnIt is well known that, given a Stein...
Pure mathematics
- 2017 •
- Jimp
Rok uplatnění
Jimp - Článek v periodiku v databázi Web of Science
Groupoids and the Associative Law VIIA. (SH-Groupoids of Type (A,B,A) and their Semigroup Distances)
Szász-Hájek groupoids (shortůy SH-groupoids) are those groupoids that contain just one non-associative (ordered) triple of elements. These groupoids were studied by G. Szász (see (10) amd (11)), P. Hájek (see (2) and (3)) a...
BA - Obecná matematika
- 2007 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Nonassociative triples in involutory loops and in loops of small order
A loop of order n possesses at least 3n(2) - 3n + 1 associative triples. If the loop is involutory, then it possesses at least 3n(2) - 2n associative triples. Involutory loops with 3n(2) - 2n associative <...
Pure mathematics
- 2021 •
- Jimp •
- Link
Rok uplatnění
Jimp - Článek v periodiku v databázi Web of Science
Výsledek na webu
A DOLBEAULT-DIRAC SPECTRAL TRIPLE FOR QUANTUM PROJECTIVE SPACE
positive definite Kahler structure has a canonically associated triple satisfying, up to the compact resolvent condition, Connes' axioms for a spectral triple. In this paper with its Heckenberger-Kolb differential cal...
Pure mathematics
- 2020 •
- Jimp •
- Link
Rok uplatnění
Jimp - Článek v periodiku v databázi Web of Science
Výsledek na webu
Maximal nonassociativity via nearfields
We say that (x, y, z) Q3 is an associative triple in a quasigroup Q(*) if (x * y) * z = x * (y * z). It is easy to show that the number of associative triples) associative triples do not exist whe...
Pure mathematics
- 2020 •
- Jimp •
- Link
Rok uplatnění
Jimp - Článek v periodiku v databázi Web of Science
Výsledek na webu
Measures of weak non-compactness in preduals of von Neumann algebras and JBW*-triples
We prove, among other results, that three standard measures of weak non-compactness coincide in preduals of JBW*-triples. This result is new even for preduals of von Neumann algebras. We further provide a characterization of JBW*-
Pure mathematics
- 2020 •
- Jimp •
- Link
Rok uplatnění
Jimp - Článek v periodiku v databázi Web of Science
Výsledek na webu
Groupoids and the Associative Law IX. (Associative Triples in Some Classes of Groupoids)
BA - Obecná matematika
- 1997 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
- 1 - 10 out of 140 165