Filters
The Oblique Derivative Problem for the Laplace Equation in a Plain Domain
The oblique derivative problem for the Laplace equation is studied in a planarmultiply connected domain. The solution is looked for in a form of a linear combination of a single layer potential and an angular potential<...
BA - Obecná matematika
- 2004 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Lq-solution of the Robin problem for the Oseen system
We define Oseen single layer and double layer potentials and study their properties. Using the integral equation method we prove the existence and uniqueness of an $L^q$-solution of the Robin problem for the Oseen ...
BA - Obecná matematika
- 2016 •
- Jx •
- Link
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Výsledek na webu
A Common Formalism for the Integral Formulations of the Forward EEG Problem
We first present a dual approach which involves a single-layer potential. Then, we propose a symmetric formulation, which combines single and double-layer potentials, and which is new to the field...
JD - Využití počítačů, robotika a její aplikace
- 2005 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
The Third Problem for the Laplace Equation with a Boundary Condition from Lp
The third problem for the Laplace equation is studied on an open set with Lipschitz boundary. The boundary condition is in Lp and it is fulfilled in the sense of the nontangential limit. The existence and the uniqueness of a solution is proved and th...
BA - Obecná matematika
- 2006 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Optimization of Perfectly Matched Layer for Laplace's Equation
Parameters of the Perfectly Matched Layer of circular boundary are rigorously calculated in the paper. The PML consists of a single, double or triple layer of elements, whose artificial parameters are calculated by minimizi...
JA - Elektronika a optoelektronika, elektrotechnika
- 2002 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Neumann and Robin problems in a cracked domain with jump conditions on cracks
for in the form of the sum of a single layer potential and a double layer potential...
BA - Obecná matematika
- 2005 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Perfectly matched layers for stationary magnetic field
Matched Layers, applied on the circular boundary or its part, are rigorously calculated in the paper. The Perfect Matched Layers consists of a single, or double layerThe solution of the Poisson?s equation for two-...
JA - Elektronika a optoelektronika, elektrotechnika
- 2002 •
- D
Rok uplatnění
D - Stať ve sborníku
Solution of the Transmission Problem
The transmission problem for the Laplace equation is studied. The boundary conditions are p-integrable p-integrable functions and they are satisfied in the sense of the non-tangential limit. The necessary and sufficient conditions for a solvability o...
BA - Obecná matematika
- 2010 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Integral representation of a solution of the Neumann problem for the Stokes system
A classical solution of the Neumann problem for the Stokes system is studied on bounded and exterior domains with Ljapunov boundary. A solution of this problem is constructed in the form of appropriate potentials. A solution of the correspon...
BA - Obecná matematika
- 2010 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Transmission problem for the Brinkman system
L-2-solutions of the transmission problem, the Robin-transmission problem and the Dirichlet-transmission problem for the Brinkman system are studied by the integral equation method. Necessary and sufficient conditions for the solvability are given. T...
BA - Obecná matematika
- 2014 •
- Jx •
- Link
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Výsledek na webu
- 1 - 10 out of 139 424