Filters
Imposing orthogonality to hierarchic higher-order finite elements
We propose a new class of hierarchic higher-order finite elements suitable for the hp-finite element method discretization of symmetric linear elliptic problems. These elements use shape functions which are partial...
BA - Obecná matematika
- 2007 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Orthogonal hp-FEM for Elliptic Problems Based on a Non-Affine Concept
In this paper we propose and test a new non-affine concept of hierarchic higher-order finite elements (hp-FEM) suitable for symmetric linear elliptic problems. The energetic inner product induced by the ellipti...
JA - Elektronika a optoelektronika, elektrotechnika
- 2006 •
- D
Rok uplatnění
D - Stať ve sborníku
Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems
Standard linear finite element solution of elliptic problems does not satisfy maximum principle on general triangular meshes in 2D. In this paper we consider how to enforce discrete maximum principle for linear fin...
BA - Obecná matematika
- 2008 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems
A symmetric and a nonsymmetric variant of the additive Schwarz preconditioner are proposed for the solution of a class of finite volume element discretization of the symmetric elliptic problem in two dimensions, wi...
BA - Obecná matematika
- 2016 •
- Jx •
- Link
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Výsledek na webu
Morrey space regularity for weak solutions of Stokes systems with VMO coefficients
We prove that for weak solutions (u, p) of Stokes system with symmetric elliptic coefficients matrix A whose entries are bounded and VMO functions and with right-hand side f in Morrey space L (2,mu) their symmetric gradient...
BA - Obecná matematika
- 2011 •
- Jx •
- Link
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
Výsledek na webu
Survey of discrete maximum principles for linear elliptic and parabolic problems
We survey techniques for proving discrete maximum principles for finite element approximations of linear elliptic and parabolic problems. Special emphasis is laid on approximations built on tetrahedral meshes....
BA - Obecná matematika
- 2004 •
- D
Rok uplatnění
D - Stať ve sborníku
A posteriori error estimates for axisymmetric and nonlinear problems.
We propose and examine the primal and dual finite element method for solving an axially symmetric elliptic problem with mixed boundary conditions. We derivean a posteriori error estimate and generalize the method used for a...
BA - Obecná matematika
- 2001 •
- Jx
Rok uplatnění
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
On a discrete maximum principle for linear FE solutions of elliptic problems with a nondiagonal coefficient matrix
In this paper we give a sufficient condition for validity of a discrete maximum principle for a class of elliptic problems of the second order with a nondiagonal coefficient matrix, solved by means of linear finite elements...
BA - Obecná matematika
- 2009 •
- C
Rok uplatnění
C - Kapitola v odborné knize
Numerical integration in the discontinuous Galerkin method for elliptic problems.
Various aspects of the use of numerical integration for the evaluation of integrals appearing in discontinuous Galerkin formulations of a linear elliptic (diffusion) problem are studied. Error estimates are given....
BA - Obecná matematika
- 2007 •
- D
Rok uplatnění
D - Stať ve sborníku
Eigenvalue problem for Linear Compact Symmetric Operators.
Eigenvalue problem for linear compact symmetric operators is considered.
BA - Obecná matematika
- 2005 •
- D
Rok uplatnění
D - Stať ve sborníku
- 1 - 10 out of 124 205