RESET: Relational Similarity Extension for V3C1 Video Dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10494544" target="_blank" >RIV/00216208:11320/24:10494544 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-56435-2_1" target="_blank" >https://doi.org/10.1007/978-3-031-56435-2_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-56435-2_1" target="_blank" >10.1007/978-3-031-56435-2_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
RESET: Relational Similarity Extension for V3C1 Video Dataset
Popis výsledku v původním jazyce
Effective content-based information retrieval (IR) is crucial across multimedia platforms, especially in the realm of videos. Whether navigating a personal home video collection or browsing a vast streaming service like YouTube, users often find that a simple metadata search falls short of meeting their information needs. Achieving a reliable estimation of visual similarity holds paramount significance for various IR applications, such as query-by-example, results clustering, and relevance feedback. While many pre-trained models exist for this purpose, they often mismatch with human-perceived similarity leading to biased retrieval results. Up until now, the practicality of fine-tuning such models has been hindered by the absence of suitable datasets. This paper introduces RESET: RElational Similarity Evaluation dataseT. RESET contains over 17,000 similarity annotations for query-candidate-candidate triples of video keyframes taken from the publicly available V3C1 video collection. RESET addresses both close and distant triplets within the realm of unconstrained V3C1 imagery and two of its compact sub-domains: wedding and diving. Offering fine-grained similarity annotations along with their context, re-annotations by multiple users, and similarity estimations from 30 pre-trained models, RESET serves dual purposes. It facilitates the evaluation of novel visual embedding models w.r.t. similarity preservation and provides a resource for fine-tuning visual embeddings to better align with human-perceived similarity. The dataset is available from https://osf.io/ruh5k.
Název v anglickém jazyce
RESET: Relational Similarity Extension for V3C1 Video Dataset
Popis výsledku anglicky
Effective content-based information retrieval (IR) is crucial across multimedia platforms, especially in the realm of videos. Whether navigating a personal home video collection or browsing a vast streaming service like YouTube, users often find that a simple metadata search falls short of meeting their information needs. Achieving a reliable estimation of visual similarity holds paramount significance for various IR applications, such as query-by-example, results clustering, and relevance feedback. While many pre-trained models exist for this purpose, they often mismatch with human-perceived similarity leading to biased retrieval results. Up until now, the practicality of fine-tuning such models has been hindered by the absence of suitable datasets. This paper introduces RESET: RElational Similarity Evaluation dataseT. RESET contains over 17,000 similarity annotations for query-candidate-candidate triples of video keyframes taken from the publicly available V3C1 video collection. RESET addresses both close and distant triplets within the realm of unconstrained V3C1 imagery and two of its compact sub-domains: wedding and diving. Offering fine-grained similarity annotations along with their context, re-annotations by multiple users, and similarity estimations from 30 pre-trained models, RESET serves dual purposes. It facilitates the evaluation of novel visual embedding models w.r.t. similarity preservation and provides a resource for fine-tuning visual embeddings to better align with human-perceived similarity. The dataset is available from https://osf.io/ruh5k.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-21696S" target="_blank" >GA22-21696S: Hluboké vizuální reprezentace nestrukturovaných dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MULTIMEDIA MODELING, MMM 2024, PT V
ISBN
978-3-031-56434-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
1-14
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Amsterdam
Datum konání akce
29. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001213982200001