All
All

What are you looking for?

All
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graphs and mappings -- Algebraic properties of graphs

Project goals

Main two topics of the project are vector coloring and flows in graphs. The first of them exemplifies usage of semidefinite programming to approximate chromatic number, the goal of the project is to understand other aspects of this parameter, both structural and algorithmic ones. The other topic includes study of the cycle space of graphs--a linear-algebraic object that encodes many properties of the graph. Cycle-continuous mappings study graphs in the spirit of homologies from algebraic topology. Petersen coloring conjecture unifies many open problems in the area in the language of morphisms that turned out to be useful in many parts of mathematics.

Keywords

graphnowhere-zero flowvector coloring

Public support

  • Provider

    Czech Science Foundation

  • Programme

    Standard projects

  • Call for proposals

    Standardní projekty 20 (SGA0201600001)

  • Main participants

    Univerzita Karlova / Matematicko-fyzikální fakulta

  • Contest type

    VS - Public tender

  • Contract ID

    16-19910S

Alternative language

  • Project name in Czech

    Grafy a zobrazení -- Algebraické vlastnosti grafů

  • Annotation in Czech

    Hlavní dvě nosná témata projektu jsou vektorové barvení a toky v grafech. První z těchto témat souvisí s užitím semidefinitního programování pro aproximaci barevnosti, cílem projektu je zkoumat další aspekty tohoto parametru, jak strukturální tak i algoritmické. . Druhé téma zahrnuje zkoumání struktury prostoru cyklů v grafech, což je lineárně-algebraická vlastnost grafu, která zachycuje mnohé jeho vlastnosti. Cyklově spojitá zobrazení zkoumají grafy v duchu homologií z algebraické topologie. Hypotéza o Petersenově barvení zachycuje velkou část otevřených problémů v této oblasti v jazyce morfismů, který se ukázal užitečný v mnoha oblastech matematiky.

Scientific branches

  • R&D category

    ZV - Basic research

  • CEP classification - main branch

    IN - Informatics

  • CEP - secondary branch

    BA - General mathematics

  • CEP - another secondary branch

  • 10101 - Pure mathematics
    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Completed project evaluation

  • Provider evaluation

    U - Uspěl podle zadání (s publikovanými či patentovanými výsledky atd.)

  • Project results evaluation

    The main project outcomes are new results in algorithmic graph theory, especially in the areas of nowhere-zero graph flows and graph colorings. The achieved results were published in high-quality journals, the main research objectives were successfully accomplished.

Solution timeline

  • Realization period - beginning

    Jan 1, 2016

  • Realization period - end

    Dec 31, 2018

  • Project status

    U - Finished project

  • Latest support payment

    Apr 26, 2018

Data delivery to CEP

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

  • Data delivery code

    CEP19-GA0-GA-U/01:1

  • Data delivery date

    Jun 12, 2019

Finance

  • Total approved costs

    3,222 thou. CZK

  • Public financial support

    2,604 thou. CZK

  • Other public sources

    618 thou. CZK

  • Non public and foreign sources

    0 thou. CZK

Basic information

Recognised costs

3 222 CZK thou.

Public support

2 604 CZK thou.

80%


Provider

Czech Science Foundation

CEP

IN - Informatics

Solution period

01. 01. 2016 - 31. 12. 2018