All
All

What are you looking for?

All
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flows and cycles in graphs on surfaces

Project goals

Flows in graphs have a long and rich history in combinatorial theory. In his influential paper, Tutte introduced the concept of nowhere-zero flows motivated by the duality to graph colorings in plane graphs. Nowhere-zero flows rose to prominence in part due to their connections to other important topics such as the Cycle Double Cover conjecture and Berge–Fulkerson conjecture. The importance of the topic is further reinforced through algebraic connections, in particular through the Tutte polynomial which enumerates flows and relates them to other graph invariants when evaluated at suitable points. Much of the research into nowhere-zero flows is inspired by Tutte's insightful conjectures and focuses on general graphs. In this project, we investigate the topic of flows in graphs drawn on surfaces, motivated by applications in graph coloring and a possible approach towards the Cycle Double Cover conjecture. Moreover, we develop the algebraic connection via the study of the surface Tutte polynomial.

Keywords

flowsgraphssurfacescoloring

Public support

  • Provider

    Czech Science Foundation

  • Programme

    Standard projects

  • Call for proposals

    SGA0202200004

  • Main participants

    Univerzita Karlova / Matematicko-fyzikální fakulta

  • Contest type

    VS - Public tender

  • Contract ID

    22-17398S

Alternative language

  • Project name in Czech

    Toky a cykly v grafech na plochách

  • Annotation in Czech

    Toky v grafech jsou historicky jedním z centrálních témat kombinatoriky. Nikde-nulové toky byly zavedeny ve vlivném článku W. Tutteho jakožto duální koncept ke grafové barevnosti, a k jejich význačnosti přispěly i další souvislosti, například s hypotézou o dvojitém pokrytí cykly a Berge-Fulkersonovou hypotézou, či algebraické propojení s dalšími grafovými parametry přes Tutteho polynom. Většina výzkumu týkajícího se nikde-nulových toků je inspirována Tutteho hypotézami a zaměřuje se na toky v obecných grafech. V tomto projektu budeme studovat toky v grafech na plochách, což je motivováno aplikacemi v grafové barevnosti a ve slibném přístupu k hypotéze o dvojitém pokrytí cykly. Zaměříme se také na algebraické souvislosti a rozvineme teorii plochového Tutteho polynomu.

Scientific branches

  • R&D category

    ZV - Basic research

  • OECD FORD - main branch

    10101 - Pure mathematics

  • OECD FORD - secondary branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

  • OECD FORD - another secondary branch

  • AF - Documentation, librarianship, work with information
    BA - General mathematics
    BC - Theory and management systems
    BD - Information theory
    IN - Informatics

Solution timeline

  • Realization period - beginning

    Jan 1, 2022

  • Realization period - end

    Dec 31, 2024

  • Project status

  • Latest support payment

    Feb 29, 2024

Data delivery to CEP

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

  • Data delivery code

    CEP25-GA0-GA-R

  • Data delivery date

    Mar 12, 2025

Finance

  • Total approved costs

    10,780 thou. CZK

  • Public financial support

    9,743 thou. CZK

  • Other public sources

    1,037 thou. CZK

  • Non public and foreign sources

    0 thou. CZK

Basic information

Recognised costs

10 780 CZK thou.

Public support

9 743 CZK thou.

90%


Provider

Czech Science Foundation

OECD FORD

Pure mathematics

Solution period

01. 01. 2022 - 31. 12. 2024