All
All

What are you looking for?

All
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Complexity of mathematical proofs and structures

Project goals

We study weak logical systems, guided by the question: what is the weakest natural theory in which we can prove a mathematical statement? This question is often fundamentally complexity theoretic in nature, as proofs in such weak systems can be associated with feasible computations. We will study this and related topics in a range of settings, including bounded arithmetic, model theory, algebraic complexity, bounded set theory, and nonclassical logics.

Keywords

logicproof complexitymodel theorybounded arithmeticcomputational complexityalgebraic complexitypropositional translationsweak set theorymodal logic

Public support

  • Provider

    Czech Science Foundation

  • Programme

    Standard projects

  • Call for proposals

    Standardní projekty 23 (SGA0201900001)

  • Main participants

    Matematický ústav AV ČR, v. v. i.

  • Contest type

    VS - Public tender

  • Contract ID

    19-05497S

Alternative language

  • Project name in Czech

    Složitost matematických důkazů a struktur

  • Annotation in Czech

    Budeme studovat logické systémy se zřetelem na otázku, jaká je nejslabší přirozená teorie, v níž lze dokázat dané matematické tvrzení. Tato otázka se často v hloubi týká výpočetní složitosti, neboť důkazy v takovýchto slabých systémech souvisí s efektivními výpočty. Budeme studovat tyto a příbuzná témata v různých kontextech, mj. v omezené aritmetice, teorii modelů, algebraické složitosti, omezené teorii množin a neklasických logikách.

Scientific branches

  • R&D category

    ZV - Basic research

  • OECD FORD - main branch

    10101 - Pure mathematics

  • OECD FORD - secondary branch

  • OECD FORD - another secondary branch

  • BA - General mathematics

Completed project evaluation

  • Provider evaluation

    U - Uspěl podle zadání (s publikovanými či patentovanými výsledky atd.)

  • Project results evaluation

    The project has led to a large number of results within theoretical computer science (9 conference and 9 journal papers), particularly in logic and proof complexity; particular highlights of the project include results concerning challenging lower bound problems and related techniques in mathematical logic.

Solution timeline

  • Realization period - beginning

    Jan 1, 2019

  • Realization period - end

    Jun 30, 2022

  • Project status

    U - Finished project

  • Latest support payment

    Apr 1, 2022

Data delivery to CEP

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

  • Data delivery code

    CEP23-GA0-GA-U

  • Data delivery date

    Jun 26, 2023

Finance

  • Total approved costs

    9,171 thou. CZK

  • Public financial support

    8,514 thou. CZK

  • Other public sources

    657 thou. CZK

  • Non public and foreign sources

    0 thou. CZK

Basic information

Recognised costs

9 171 CZK thou.

Public support

8 514 CZK thou.

92%


Provider

Czech Science Foundation

OECD FORD

Pure mathematics

Solution period

01. 01. 2019 - 30. 06. 2022