All
All

What are you looking for?

All
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Descriptive set theory and universality questions in Banach space theory

Project goals

This project deals with connections between methods of descriptive set theory and some questions from the theory of separable Banach spaces. Such connections were discovered by Bourgain in 1980s and we know today that these methods provide the right approach to the questions of universality of Banach spaces. The work of Argyros and Dodos is important from this viewpoint. They showed that, in many cases, for a given analytic class of spaces with a property (P), there exists a universal space also with property (P). Nevertheless, their amalgamation theory considers only the universality in the sense of isomorphism. During this project, we want to find an analogous theory which considers the universality in the sense of isometry.

Keywords

separable Banach spaceisometrically universal spacetree spaceamalgamation theoryEffros-Borel structureanalytic classfinite-dimensional decomposition

Public support

  • Provider

    Czech Science Foundation

  • Programme

    Post-graduate (doctorate) grants

  • Call for proposals

    Postdoktorandské granty 15 (SGA0201400003)

  • Main participants

    Univerzita Karlova / Matematicko-fyzikální fakulta

  • Contest type

    VS - Public tender

  • Contract ID

    14-04892P

Alternative language

  • Project name in Czech

    Deskriptivní teorie množin a otázky univerzálnosti v teorii Banachových prostorů

  • Annotation in Czech

    Tento projekt se zabývá souvislostmi mezi metodami deskriptivní teorie množin a některými otázkami z teorie separabilních Banachových prostorů. Tyto souvislosti odhalil v 80. letech Bourgain a dnes víme, že tyto metody poskytují správný přístup k otázkám univerzálnosti Banachových prostorů. Zásadní je v tomto ohledu práce Argyrose a Dodose. Ti ukázali, že v řadě případů k dané analytické tříde prostorů s nějakou vlastností (P) existuje univerzální prostor rovněž s vlastností (P). Jejich amalgamační teorie však uvažuje pouze univerzalitu vzhledem k izomorfismu. Během tohoto projektu chceme najít analogickou teorii, která bude uvažovat univerzalitu vzhledem k izometrii.

Scientific branches

  • R&D category

    ZV - Basic research

  • CEP classification - main branch

    BA - General mathematics

  • CEP - secondary branch

  • CEP - another secondary branch

  • 10101 - Pure mathematics

Completed project evaluation

  • Provider evaluation

    U - Uspěl podle zadání (s publikovanými či patentovanými výsledky atd.)

  • Project results evaluation

    The solution of the project was successful. New significant results in the circle of question proposed in the project were obtained. The obtained results contribute to the knowledge in the theory of Banach spaces. The results were appeared in three papers published in very good journals, another paper was submitted.

Solution timeline

  • Realization period - beginning

    Jan 1, 2014

  • Realization period - end

    Dec 31, 2016

  • Project status

    U - Finished project

  • Latest support payment

    Apr 5, 2016

Data delivery to CEP

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

  • Data delivery code

    CEP17-GA0-GP-U/01:1

  • Data delivery date

    Jun 30, 2017

Finance

  • Total approved costs

    693 thou. CZK

  • Public financial support

    693 thou. CZK

  • Other public sources

    0 thou. CZK

  • Non public and foreign sources

    0 thou. CZK

Basic information

Recognised costs

693 CZK thou.

Public support

693 CZK thou.

100%


Provider

Czech Science Foundation

CEP

BA - General mathematics

Solution period

01. 01. 2014 - 31. 12. 2016