All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A machine learning based approach with an augmented dataset for fatigue life prediction of additively manufactured Ti-6Al-4V samples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00010669%3A_____%2F23%3AN0000016" target="_blank" >RIV/00010669:_____/23:N0000016 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0013794423006677?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0013794423006677?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engfracmech.2023.109709" target="_blank" >10.1016/j.engfracmech.2023.109709</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A machine learning based approach with an augmented dataset for fatigue life prediction of additively manufactured Ti-6Al-4V samples

  • Original language description

    The article deals with the prediction of fatigue life using a machine learning (ML) approach. The original dataset is based on the parameters of defects obtained by micro-computed tomography (μ-CT) prior to fatigue tests, stress level and the fatigue life of additively manufactured (AM) Ti-6Al-4V samples. As the original dataset is considered too small to train a comprehensive ML model, the study proposed a novel approach for dataset augmentation. Dataset augmentation is done using inverse transform sampling and multivariate radial basis function (RBF) interpolation with various values of the smoothing parameter. Finally, ML model accuracy is improved up to 0.953 of coefficient of determination.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20304 - Aerospace engineering

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Engineering Fracture Mechanics

  • ISSN

    0013-7944

  • e-ISSN

    1873-7315

  • Volume of the periodical

    293

  • Issue of the periodical within the volume

    12/2023

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    19

  • Pages from-to

  • UT code for WoS article

    001112329800001

  • EID of the result in the Scopus database

    2-s2.0-85176265491