All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

AsphaltFatigueANN

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00375373" target="_blank" >RIV/68407700:21110/24:00375373 - isvavai.cz</a>

  • Result on the web

    <a href="https://github.com/VaclavNezerka/AsphaltFatigueANN" target="_blank" >https://github.com/VaclavNezerka/AsphaltFatigueANN</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    AsphaltFatigueANN

  • Original language description

    The durability and maintenance demands of asphalt concrete (AC) are significantly influenced by its fatigue life, traditionally determined through laborious and time-consuming methods. To address this, we developed a software tool that leverages artificial neural networks (ANNs) to predict AC fatigue life with high accuracy. This innovative software focuses on key parameters such as strain level, binder content, and air-void content, using a substantial dataset to manage the wide range of fatigue life data typically represented on a logarithmic scale. By utilizing the mean square logarithmic error as the loss function, our software ensures precise predictions across all fatigue life levels. The tool features an optimized ANN model that captures the intricate relationships within the data, demonstrating that higher binder content significantly enhances fatigue life, while the impact of air-void content varies with binder levels. This user-friendly software provides researchers and engineers with a powerful platform for AC fatigue life modeling, showcasing the efficiency and effectiveness of ANNs in handling large datasets. The software, along with the dataset, is available as open-source on a GitHub repository, facilitating further research and practical applications.

  • Czech name

  • Czech description

Classification

  • Type

    R - Software

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GF22-04047K" target="_blank" >GF22-04047K: Advanced approaches for determination and understanding of asphalt mix fatigue behaviour</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Internal product ID

    AsphaltFatigueANN

  • Technical parameters

    Software byl vyvinut v programovacím jazyce Python 3, ovládání pomocí hlavního skriptu, kde se nastavují jednotlivé řídící parametry modelu strojového učení. Vyvíjeno jako open-source (GNU General Public License).

  • Economical parameters

    Využití softwaru významně uspoří prostředky pro stanovení únavových vlastností aslfaltových směsí, jejichž zkouška je mimořádně časově a tím i finančně náročná. Úspora na jedno testované těleso je přibližně 5 tis. Kč.

  • Owner IČO

    68407700

  • Owner name

    České vysoké učení technické v Praze