All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GPACDA: circRNA-disease association prediction with generating polynomials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023736%3A_____%2F24%3A00013712" target="_blank" >RIV/00023736:_____/24:00013712 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-64629-4_3" target="_blank" >https://doi.org/10.1007/978-3-031-64629-4_3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-64629-4_3" target="_blank" >10.1007/978-3-031-64629-4_3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    GPACDA: circRNA-disease association prediction with generating polynomials

  • Original language description

    Circular RNA, a molecule with partially understood functions, has been implicated in various diseases. Therefore, there is a vast effort to predict associations between circular RNAs and diseases. In our recent study, we introduced circGPA, an algorithm that enables the annotation of circular RNAs with gene ontology terms through interactions with miRNAs and mRNAs. Recognizing the analytical similarity in predicting disease associations, we developed GPACDA, an extension of circGPA tailored for disease associations. The benefits of our methods include explainability, as the outputs are based on known interactions and associations, as well as the rigorous calculation of the p-value, which the circGPA algorithm can compute. We compared our method with two other tools, NCPCDA and DWNCPCDA, using a subset of the CDASOR dataset and showed that GPACDA overcomes its competitors in terms of true association ranks. Our method’s code and predictions are publicly accessible.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    30205 - Hematology

Result continuities

  • Project

    <a href="/en/project/NU20-03-00412" target="_blank" >NU20-03-00412: Role of transposable elements and PIWI-interacting RNAs in myelodysplastic syndrome and their potential clinical applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-303164628-7

  • Number of pages of the result

    16

  • Pages from-to

    33-48

  • Number of pages of the book

    337

  • Publisher name

    Springer Verlag

  • Place of publication

    Berlin

  • UT code for WoS chapter