All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023884%3A_____%2F22%3A00009340" target="_blank" >RIV/00023884:_____/22:00009340 - isvavai.cz</a>

  • Result on the web

    <a href="https://academic.oup.com/mbe/article/39/1/msab331/6432054" target="_blank" >https://academic.oup.com/mbe/article/39/1/msab331/6432054</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/molbev/msab331" target="_blank" >10.1093/molbev/msab331</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora

  • Original language description

    Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30202 - Endocrinology and metabolism (including diabetes, hormones)

Result continuities

  • Project

  • Continuities

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Molecular Biology and Evolution

  • ISSN

    0737-4038

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000771141500007

  • EID of the result in the Scopus database

    2-s2.0-85123878029