Gronwall's inequality in an approximate computation of ellipsoidal harmonics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F03%3A00007390" target="_blank" >RIV/00025615:_____/03:00007390 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Gronwall's inequality in an approximate computation of ellipsoidal harmonics
Original language description
The purpose of this paper is to discuss the difference between the solution of the exact and an approximate version of an ordinary differential equation, which results from the use of the method of separation of variables in the solution of Laplace's partial differential equation. The problem is interpreted in terms of systems of ordinary differential equations of the first order and Gronwall's inequality is applied as an efficient tool to get an estimate of the investigated difference. The problem is motivated by the use of ellipsoidal harmonics in refined studies on Earth gravitational potential.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Em.Univ.-Prof. Dipl.-Ing. Dr.h.c.mult. Dr.techn. Helmut Moritz Festschrift zum 70. Geburtstag
ISBN
—
Number of pages of the result
12
Pages from-to
111-122
Number of pages of the book
—
Publisher name
Institut fuer Geodaesie,Technische Universitaet Graz
Place of publication
Graz
UT code for WoS chapter
—