On the reproducing kernel for an oblate ellipsoid of revolution and its use in gravity field studies: Series representation, summation and numerical treatment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F13%3A%230001895" target="_blank" >RIV/00025615:_____/13:#0001895 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the reproducing kernel for an oblate ellipsoid of revolution and its use in gravity field studies: Series representation, summation and numerical treatment
Original language description
In the introductory part the importance of the topic for gravity field studies is outlined. Some concepts and tools often used for the representation of the solution of the related boundary value problems are mentioned. Subsequently a weak formulation ofNeumann?s problem is considered with emphasis on a particular choice of function basis generated by the reproducing kernel of the respective Hilbert space of functions. The use of the reproducing kernel offers a very straightforward way leading to entries in Galekin?s matrix of the respective linear system for unknown scalar coefficients. The paper then focuses on the construction of the reproducing kernel for the solution domain given by the exterior of an oblate ellipsoid of revolution. The fundamental problem, however, is the possibility of practical summation of the series that represents the kernel. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is not a straightforward analogue to th
Czech name
—
Czech description
—
Classification
Type
A - Audiovisual production
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Place of publication
Vienna
Publisher/client name
European Geosciences Union
Version
—
Carrier ID
—