Reproducing Kernel and Neumann?s Function for the Exterior of an Oblate Ellipsoid of Revolution: Application in Gravity Field Studies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F14%3A%230002079" target="_blank" >RIV/00025615:_____/14:#0002079 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11200-013-0861-3" target="_blank" >http://dx.doi.org/10.1007/s11200-013-0861-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11200-013-0861-3" target="_blank" >10.1007/s11200-013-0861-3</a>
Alternative languages
Result language
angličtina
Original language name
Reproducing Kernel and Neumann?s Function for the Exterior of an Oblate Ellipsoid of Revolution: Application in Gravity Field Studies
Original language description
The purpose of this paper is to discuss the construction of the reproducing kernel of Hilbert?s space of functions that are harmonic in the exterior of an oblate ellipsoid of revolution. The motivation comes from the weak solution concept applied to Neumann?s problem for Laplace?s partial differential equation in gravity field studies. The use of the reproducing kernel enables the construction of a function basis that is suitable for the approximation representation of the solution and offers a straightforward way leading to entries in Galerkin?s matrix of the respective linear system for unknown scalar coefficients. The serious problem, however, is the summation of the series that represents the kernel. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no straightforward analogue to the addition theorem known for the spherical situation. This makes the computation of the kernel and the set of the entries in Galerkin?s matrix rather demand
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Geophysica et Geodaetica
ISSN
0039-3169
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
31
Pages from-to
505-535
UT code for WoS article
—
EID of the result in the Scopus database
—