All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Laplacian and Topography in the Iterative Solution of the Boundary Value Problem of Physical Geodesy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F14%3A%230002087" target="_blank" >RIV/00025615:_____/14:#0002087 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    Laplacián a topografie při iteračním řešení okrajové úlohy fyzikální geodézie

  • Original language description

    Vztah mezi popisem fyzického povrchu Země a strukturou Laplaceova operátoru nabízí zajímavý pohled na řešení okrajových problémů teorie potenciálu ve fyzikální geodézii. Podobně jako v jiných oblastech techniky a matematické fyziky také zde může býti využita transformace souřadnic k posouzení a volbě alternativy mezi složitostí hranice a složitostí koeficientů parciální diferenciální rovnice, kterou musí splňovat hledané řešení studovaného problému, v daném případě poruchový potenciál. Laplaceův operátor má poměrně jednoduchou strukturu pokud je vyjádřen ve sférických souřadnicích, které se často požívají v geodézii. Fyzický povrch Země se však podstatně liší od (geocentrické) sféry, byť s optimálně voleným poloměrem, která reprezentuje jednu ze souřadnicových ploch v systému sférických souřadnic. Situace může ale býti výhodnější v systému obecných křivočarých souřadnic, a to takových, že fyzický povrch Země je vnořen do systému souřadnicových ploch. Na druhé straně je však struktura L

  • Czech name

    Laplacián a topografie při iteračním řešení okrajové úlohy fyzikální geodézie

  • Czech description

    Vztah mezi popisem fyzického povrchu Země a strukturou Laplaceova operátoru nabízí zajímavý pohled na řešení okrajových problémů teorie potenciálu ve fyzikální geodézii. Podobně jako v jiných oblastech techniky a matematické fyziky také zde může býti využita transformace souřadnic k posouzení a volbě alternativy mezi složitostí hranice a složitostí koeficientů parciální diferenciální rovnice, kterou musí splňovat hledané řešení studovaného problému, v daném případě poruchový potenciál. Laplaceův operátor má poměrně jednoduchou strukturu pokud je vyjádřen ve sférických souřadnicích, které se často požívají v geodézii. Fyzický povrch Země se však podstatně liší od (geocentrické) sféry, byť s optimálně voleným poloměrem, která reprezentuje jednu ze souřadnicových ploch v systému sférických souřadnic. Situace může ale býti výhodnější v systému obecných křivočarých souřadnic, a to takových, že fyzický povrch Země je vnořen do systému souřadnicových ploch. Na druhé straně je však struktura L

Classification

  • Type

    A - Audiovisual production

  • CEP classification

    DE - Earth magnetism, geodesy, geography

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • ISBN

  • Place of publication

    Zámek Kozel

  • Publisher/client name

    Oddělení geomatiky Fakulty aplikovaných věd Západočeské univeryity

  • Version

  • Carrier ID