An improved methodology for precise geoid/quasigeoid modelling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F16%3AN0000049" target="_blank" >RIV/00025615:_____/16:N0000049 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An improved methodology for precise geoid/quasigeoid modelling
Original language description
The paper describes recent development of the computational procedure useful for precise local quasigeoid modelling. The overall methodology is primarily based on a solution of the so-called gravimetric boundary value problem for an ellipsoidal domain (exterior to an oblate spheroid), which means that gravity disturbances on the ellipsoid are used in quality of input data. The problem of a difference between the Earth’s topography and the chosen ellipsoidal surface is solved iteratively, by analytical continuation of the gravity disturbances to the computational ellipsoid. The methodology covers an interpolation technique of the discrete gravity data, which, considering a priori adopted covariance function, provides the best linear unbiased estimate of the respective quantity, numerical integration technique developed on the surface of ellipsoid in the spectral domain, an iterative procedure analytical continuation in ellipsoidal coordinates, remove and restore of the atmospheric masses, an estimate of the far-zones contribution (in a case of regional data coverage) and the restore step of the obtained disturbing gravity potential to the target height anomaly. All the computational steps of the procedure are modest in the consumption of compute resources, thus the methodology can be used on a common personal computer, free of any accuracy or resolution penalty. Finally, the performance of the developed methodology is demonstrated on the real-case examples related to the territories of France (Auvergne regional quasigeoid) and the Czech Republic.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-34595S" target="_blank" >GA14-34595S: Mathematical methods for Earth’s gravity field studies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů