All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Application of neural network to assess landslide hazard and comparison with bivariate and multivariate statistical analyses

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F16%3A00000094" target="_blank" >RIV/00025798:_____/16:00000094 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.geopaleo.fns.uniba.sk/ageos/articles/abstract_en.php?path=tornyai_et_al&vol=8&iss=1" target="_blank" >http://www.geopaleo.fns.uniba.sk/ageos/articles/abstract_en.php?path=tornyai_et_al&vol=8&iss=1</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Application of neural network to assess landslide hazard and comparison with bivariate and multivariate statistical analyses

  • Original language description

    Landslide hazard in the Žilina area in northern Slovakia is assessed using neural network analysis. Four input parameters are evaluated, they are presented as a result of statistical processing in the form of parametric maps. Statisti- cal evaluation was executed in ArcGIS environment; neural network was calculated in Matlab. The output of this study is a prognostic landslide hazard map. Further, the result was compared with the hazard map created using bivariate and multivariate statistical analyses through ROC curves. Area below curve (AUC) calculated from ROC curve shows accuracy of individual models. It can be stated that the NN´s AUC is equal to 0.924, what represents the rate of success 92.4%; bivariate multivariate analyses AUC is equal to 0.852 and 0.919.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    DB - Geology and mineralogy

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/7AMB14SK038" target="_blank" >7AMB14SK038: Forecasting landslide hazard in the Carpathian flysch and preparation unified methodology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Geologica Slovaca

  • ISSN

    1338-0044

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    10

  • Pages from-to

    109-118

  • UT code for WoS article

  • EID of the result in the Scopus database