All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The effects of solar radiation on daily and seasonal stem increment of canopy trees in European temperate old-growth forests

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F24%3AN0000044" target="_blank" >RIV/00027073:_____/24:N0000044 - isvavai.cz</a>

  • Result on the web

    <a href="https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.19852" target="_blank" >https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.19852</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/nph.19852" target="_blank" >10.1111/nph.19852</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The effects of solar radiation on daily and seasonal stem increment of canopy trees in European temperate old-growth forests

  • Original language description

    It is well established that solar irradiance greatly influences tree metabolism and growth through photosynthesis, but its effects acting through individual climate metrics have not yet been well quantified. Understanding these effects is crucial for assessing the impacts of climate change on forest ecosystems. To describe the effects of solar irradiance on tree growth, we installed 110 automatic dendrometers in two old-growth mountain forest reserves in Central Europe, performed detailed terrestrial and aerial laser scanning to obtain precise tree profiles, and used these to simulate the sum of solar irradiance received by each tree on a daily basis. Generalized linear mixed-effect models were applied to simulate the probability of growth and the growth intensity over seven growing seasons. Our results demonstrated various contrasting effects of solar irradiance on the growth of canopy trees. On the one hand, the highest daily growth rates corresponded with the highest solar irradiance potentials (i.e. the longest photoperiod). Intense solar irradiance significantly decreased tree growth, through an increase in the vapor pressure deficit. These effects were consistent for all species but had different magnitude. Tree growth is the most effective on long rainy/cloudy days with low solar irradiance.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    NEW PHYTOLOGIST

  • ISSN

    0028-646X

  • e-ISSN

    1469-8137

  • Volume of the periodical

    243

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    662-673

  • UT code for WoS article

    001227759200001

  • EID of the result in the Scopus database

    2-s2.0-85193720245