Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027162%3A_____%2F19%3AN0000304" target="_blank" >RIV/00027162:_____/19:N0000304 - isvavai.cz</a>
Alternative codes found
RIV/68378271:_____/19:00509040 RIV/68081731:_____/19:00509040 RIV/00216208:11150/19:10399069 RIV/61989592:15110/19:73596348
Result on the web
<a href="https://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.9b00225" target="_blank" >https://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.9b00225</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization
Original language description
Nanodiamonds (ND), especially fluorescent NDs, represent potentially applicable drug and probe carriers for in vitro/in vivo applications. The main purpose of this study was to relate physical-chemical properties of carboxylated NDs to their intracellular distribution and impact on membranes and cell immunity-activation of inflammasome in the in vitro THP-1 cell line model. Dynamic light scattering, nanoparticle tracking analysis, and microscopic methods were used to characterize ND particles and their intracellular distribution. Fluorescent NDs penetrated the cell membranes by both macropinocytosis and mechanical cutting through cell membranes. We proved accumulation of fluorescent NDs in lysosomes. In this case, lysosomes were destabilized and cathepsin B was released into the cytoplasm and triggered pathways leading to activation of inflammasome NLRP3, as detected in THP-1 cells. Activation of inflammasome by NDs represents an important event that could underlie the described toxicological effects in vivo induced by NDs. According to our knowledge, this is the first in vitro study demonstrating direct activation of inflammasome by NDs. These findings are important for understanding the mechanism(s) of action of ND complexes and explain the ambiguity of the existing toxicological data.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30102 - Immunology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Molecular Pharmaceutics
ISSN
1543-8384
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
3441-3451
UT code for WoS article
000480371700011
EID of the result in the Scopus database
2-s2.0-85068455612