All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Location-specific prediction of vulnerable plaque using IVUS, virtual histology, and spatial context

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F16%3A10329203" target="_blank" >RIV/00064165:_____/16:10329203 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11110/16:10329203

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ISBI.2016.7493518" target="_blank" >http://dx.doi.org/10.1109/ISBI.2016.7493518</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISBI.2016.7493518" target="_blank" >10.1109/ISBI.2016.7493518</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Location-specific prediction of vulnerable plaque using IVUS, virtual histology, and spatial context

  • Original language description

    Early detection of the high-risk lesions such as thin-cap fibroatheroma (TCFA) is highly desired in the clinic. Our group recently addressed the task of prediction of future TCFAs based on baseline virtual histology intravascular ultrasound (VH-IVUS) data with prediction performance not suffcient for routine clinical use. To achieve clinical relevance of our TCFA prediction, an improved strategy is presented here that introduces a spatial context between adjacent IVUS-frame locations and uses a 3-frame TCFA defnition. We compared performance of four types of feature set (VHbased, IVUS-based, biomarkers, and combined features), two feature selection approaches (support vector machine recursive feature elimination [SVM RFE] and mutual information [MI]), and two classifers (SVM and random forests [RF]) when analyzing 24 baseline-follow-up patient datasets. The experimental results indicated that the best prediction performance achieved nearly 10% improvement compared to our previous context-free method -AUC = 0.86, sensitivity=82.6%, specificity=82.1%.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    FA - Cardiovascular diseases including cardio-surgery

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LH12053" target="_blank" >LH12053: The prediction of extension and risk profile of coronary atherosclerosis and their changes during lipid-lowering therapy based on non-invasive techniques.</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)

  • ISBN

    978-1-4799-2349-6

  • ISSN

    1945-7928

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1354-1358

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Prague

  • Event date

    Apr 13, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000386377400320