Prospective Prediction of Thin-Cap Fibroatheromas from Baseline Virtual Histology Intravascular Ultrasound Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F15%3A10314395" target="_blank" >RIV/00216208:11110/15:10314395 - isvavai.cz</a>
Alternative codes found
RIV/00064165:_____/15:10314395
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-24571-3_72" target="_blank" >http://dx.doi.org/10.1007/978-3-319-24571-3_72</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-24571-3_72" target="_blank" >10.1007/978-3-319-24571-3_72</a>
Alternative languages
Result language
angličtina
Original language name
Prospective Prediction of Thin-Cap Fibroatheromas from Baseline Virtual Histology Intravascular Ultrasound Data
Original language description
Thin-cap fibroatheroma (TCFA) is particularly prone to rupture, which may result in myocardial infarction and death. Virtual histology intravascular ultrasound (VH-IVUS) provides quantitative information about plaque composition and enables TCFA identification. However, prospective prediction of future development of TCFA has not been previously possible. The aim of our study was to determine whether subsequent development of TCFA can be predicted from baseline VH-IVUS data. Corresponding VH-IVUS imagesof baseline and follow-up examinations were identified by a highly automated approach to register IVUS pullback pairs from 24 patients (2,331 image pairs). Next, 20 location-specific VH-based and IVUS-based features including plaque phenotype and morphology, and 15 systemic patient-specific features were extracted and ranked using a support vector machine recursive feature elimination (SVM RFE) technique. SVM was applied to assess the prediction power of different feature sets, by addin
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
FA - Cardiovascular diseases including cardio-surgery
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015
ISBN
978-3-319-24570-6
ISSN
0302-9743
e-ISSN
—
Number of pages
8
Pages from-to
603-610
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Munich
Event date
Oct 5, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000366206800072