All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prospective Prediction of Thin-Cap Fibroatheromas from Baseline Virtual Histology Intravascular Ultrasound Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F15%3A10314395" target="_blank" >RIV/00216208:11110/15:10314395 - isvavai.cz</a>

  • Alternative codes found

    RIV/00064165:_____/15:10314395

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-24571-3_72" target="_blank" >http://dx.doi.org/10.1007/978-3-319-24571-3_72</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-24571-3_72" target="_blank" >10.1007/978-3-319-24571-3_72</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prospective Prediction of Thin-Cap Fibroatheromas from Baseline Virtual Histology Intravascular Ultrasound Data

  • Original language description

    Thin-cap fibroatheroma (TCFA) is particularly prone to rupture, which may result in myocardial infarction and death. Virtual histology intravascular ultrasound (VH-IVUS) provides quantitative information about plaque composition and enables TCFA identification. However, prospective prediction of future development of TCFA has not been previously possible. The aim of our study was to determine whether subsequent development of TCFA can be predicted from baseline VH-IVUS data. Corresponding VH-IVUS imagesof baseline and follow-up examinations were identified by a highly automated approach to register IVUS pullback pairs from 24 patients (2,331 image pairs). Next, 20 location-specific VH-based and IVUS-based features including plaque phenotype and morphology, and 15 systemic patient-specific features were extracted and ranked using a support vector machine recursive feature elimination (SVM RFE) technique. SVM was applied to assess the prediction power of different feature sets, by addin

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    FA - Cardiovascular diseases including cardio-surgery

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015

  • ISBN

    978-3-319-24570-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    603-610

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Munich

  • Event date

    Oct 5, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000366206800072