QRS Complex Detection in Paced and Spontaneous Ultra-High-Frequency ECG
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064173%3A_____%2F21%3AN0000101" target="_blank" >RIV/00064173:_____/21:N0000101 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.23919/CinC53138.2021.9662647" target="_blank" >https://doi.org/10.23919/CinC53138.2021.9662647</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/CinC53138.2021.9662647" target="_blank" >10.23919/CinC53138.2021.9662647</a>
Alternative languages
Result language
angličtina
Original language name
QRS Complex Detection in Paced and Spontaneous Ultra-High-Frequency ECG
Original language description
Background: Analysis of ultra-high-frequency ECG (UHF-ECG, sampled at 5,000 Hz) informs about dyssynchrony of ventricles activation. This information can be evaluated in real-time, allowing optimization of a pacing location during pacemaker implantation. However, the current method for real-time QRS detection in UHF-ECG requires suppressed pacemaker stimuli. Aim: We present a deep learning method for real-time QRS complex detection in UHF-ECG. Method: A 3-second window from V1, V3, and V6 lead of UHF-ECG signal is standardized and processed with the UNet network. The output is an array of QRS probabilities, further transformed into resultant QRS annotation using QRS probability and distance criterion. Results: The model had been trained on 2,250 ECG recordings from the FNUSA-ICRC hospital (Brno, Czechia) and tested on 300 recordings from the FNKV hospital (Prague, Czechia). We received an overall F1 score of 97.11 % on the test set. Conclusion: Presented approach improves UHF-ECG analysis performance and, consequently, could reduce measurement time during implant procedures.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
30201 - Cardiac and Cardiovascular systems
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computing in Cardiology, Vol. 48
ISBN
978-1-66546-721-6
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
1-4
Publisher name
IEEE
Place of publication
New Jersey
Event location
Brno
Event date
Sep 12, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—