Development of an effective predictive screening tool for prostate cancer using the ClarityDX machine learning platform
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064190%3A_____%2F24%3A10001297" target="_blank" >RIV/00064190:_____/24:10001297 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11120/24:43927263
Result on the web
<a href="https://doi.org/10.1038/s41746-024-01167-9" target="_blank" >https://doi.org/10.1038/s41746-024-01167-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41746-024-01167-9" target="_blank" >10.1038/s41746-024-01167-9</a>
Alternative languages
Result language
angličtina
Original language name
Development of an effective predictive screening tool for prostate cancer using the ClarityDX machine learning platform
Original language description
The current prostate cancer (PCa) screen test, prostate-specific antigen (PSA), has a high sensitivity for PCa but low specificity for high-risk, clinically significant PCa (csPCa), resulting in overdiagnosis and overtreatment of non-csPCa. Early identification of csPCa while avoiding unnecessary biopsies in men with non-csPCa is challenging. We built an optimized machine learning platform (ClarityDX) and showed its utility in generating models predicting csPCa. Integrating the ClarityDX platform with blood-based biomarkers for clinically significant PCa and clinical biomarker data from a 3448-patient cohort, we developed a test to stratify patients' risk of csPCa; called ClarityDX Prostate. When predicting high risk cancer in the validation cohort, ClarityDX Prostate showed 95% sensitivity, 35% specificity, 54% positive predictive value, and 91% negative predictive value, at a >= 25% threshold. Using ClarityDX Prostate at this threshold could avoid up to 35% of unnecessary prostate biopsies. ClarityDX Prostate showed higher accuracy for predicting the risk of csPCa than PSA alone and the tested model-based risk calculators. Using this test as a reflex test in men with elevated PSA levels may help patients and their healthcare providers decide if a prostate biopsy is necessary.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30217 - Urology and nephrology
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NPJ DIGITAL MEDICINE
ISSN
2398-6352
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
—
UT code for WoS article
001252128300001
EID of the result in the Scopus database
—