Predominance of Movement Speed Over Direction in Neuronal Population Signals of Motor Cortex: Intracranial EEG Data and A Simple Explanatory Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F16%3A10324766" target="_blank" >RIV/00064203:_____/16:10324766 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11130/16:10324766
Result on the web
<a href="http://dx.doi.org/10.1093/cercor/bhw033" target="_blank" >http://dx.doi.org/10.1093/cercor/bhw033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/cercor/bhw033" target="_blank" >10.1093/cercor/bhw033</a>
Alternative languages
Result language
angličtina
Original language name
Predominance of Movement Speed Over Direction in Neuronal Population Signals of Motor Cortex: Intracranial EEG Data and A Simple Explanatory Model
Original language description
How neuronal activity of motor cortex is related to movement is a central topic in motor neuroscience. Motor-cortical single neurons are more closely related to hand movement velocity than speed, that is, the magnitude of the (directional) velocity vector. Recently, there is also increasing interest in the representation of movement parameters in neuronal population activity, such as reflected in the intracranial EEG (iEEG). We show that in iEEG, contrasting to what has been previously found on the single neuron level, speed predominates over velocity. The predominant speed representation was present in nearly all iEEG signal features, up to the 600-1000 Hz range. Using a model of motor-cortical signals arising from neuronal populations with realistic single neuron tuning properties, we show how this reversal can be understood as a consequence of increasing population size. Our findings demonstrate that the information profile in large population signals may systematically differ from the single neuron level, a principle that may be helpful in the interpretation of neuronal population signals in general, including, for example, EEG and functional magnetic resonance imaging. Taking advantage of the robust speed population signal may help in developing brain-machine interfaces exploiting population signals.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
FH - Neurology, neuro-surgery, nuero-sciences
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Cerebral Cortex
ISSN
1047-3211
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
2863-2881
UT code for WoS article
000377917500040
EID of the result in the Scopus database
2-s2.0-84974574139