All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Interpretable functional specialization emerges in deep convolutional networks trained on brain signals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F22%3A10443089" target="_blank" >RIV/00216208:11130/22:10443089 - isvavai.cz</a>

  • Alternative codes found

    RIV/00064203:_____/22:10443089

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=de24omQx6e" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=de24omQx6e</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-2552/ac6770" target="_blank" >10.1088/1741-2552/ac6770</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Interpretable functional specialization emerges in deep convolutional networks trained on brain signals

  • Original language description

    OBJECTIVE: Functional specialization is fundamental to neural information processing. Here, we study whether and how functional specialization emerges in artificial deep convolutional neural networks (CNNs) during a brain-computer interfacing (BCI) task. APPROACH: We trained CNNs to predict hand movement speed from intracranial EEG (iEEG) and delineated how units across the different CNN hidden layers learned to represent the iEEG signal. MAIN RESULTS: We show that distinct, functionally interpretable neural populations emerged as a result of the training process. While some units became sensitive to either iEEG amplitude or phase, others showed bimodal behavior with significant sensitivity to both features. Pruning of highly-sensitive units resulted in a steep drop of decoding accuracy not observed for pruning of less sensitive units, highlighting the functional relevance of the amplitude- and phase-specialized populations. SIGNIFICANCE: We anticipate that emergent functional specialization as uncovered here will become a key concept in research towards interpretable deep learning for neuroscience and BCI applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30103 - Neurosciences (including psychophysiology)

Result continuities

  • Project

    <a href="/en/project/GA20-21339S" target="_blank" >GA20-21339S: The dynamics of brain networks during internally and externally oriented cognitive tasks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Neural Engineering [online]

  • ISSN

    1741-2552

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    036006

  • UT code for WoS article

    000792469300001

  • EID of the result in the Scopus database

    2-s2.0-85130000495