Deep Generative Networks for Algorithm Development in Implantable Neural Technology
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146334" target="_blank" >RIV/00216305:26220/22:PU146334 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21460/22:00362829 RIV/68407700:21730/22:00362829
Result on the web
<a href="https://ieeexplore.ieee.org/document/9945379" target="_blank" >https://ieeexplore.ieee.org/document/9945379</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC53654.2022.9945379" target="_blank" >10.1109/SMC53654.2022.9945379</a>
Alternative languages
Result language
angličtina
Original language name
Deep Generative Networks for Algorithm Development in Implantable Neural Technology
Original language description
Electrical stimulation of deep brain structures is an established therapy for drug-resistant focal epilepsy. The emerging implantable neural sensing and stimulating (INSS) technology enables simultaneous delivery of chronic deep brain stimulation (DBS) and recording of electrical brain activity from deep brain structures while patients live in their home environment. Long-term intracranial electroencephalography (iEEG) iEEG signals recorded by INSS devices represent an opportunity to investigate brain neurophysiology and how DBS affects neural circuits. However, novel algorithms and data processing pipelines need to be developed to facilitate research of these long-term iEEG signals. Early-stage analytical infrastructure development for INSS applications can be limited by lacking iEEG data that might not always be available. Here, we investigate the feasibility of utilizing the Deep Generative Adversarial Network (DCGAN) for synthetic iEEG data generation. We trained DCGAN using 3-second iEEG segments and validated synthetic iEEG usability by training a classification model, using synthetic iEEG only and providing a good classification performance on unseen real iEEG with an F1 score 0.849. Subsequently, we demonstrated the feasibility of utilizing the synthetic iEEG in the INSS application development by training a deep learning network for DBS artifact removal using synthetic data only and demonstrated the performance on real iEEG signals. The presented strategy of on-demand generating synthetic iEEG will benefit early-stage algorithm development for INSS applications.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
<a href="/en/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Quality internal grants at BUT</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISBN
978-1-6654-5258-8
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1736-1741
Publisher name
IEEE
Place of publication
Prague. Czechia
Event location
Praha
Event date
Oct 9, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—