All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Generative Networks for Algorithm Development in Implantable Neural Technology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146334" target="_blank" >RIV/00216305:26220/22:PU146334 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21460/22:00362829 RIV/68407700:21730/22:00362829

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9945379" target="_blank" >https://ieeexplore.ieee.org/document/9945379</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SMC53654.2022.9945379" target="_blank" >10.1109/SMC53654.2022.9945379</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Generative Networks for Algorithm Development in Implantable Neural Technology

  • Original language description

    Electrical stimulation of deep brain structures is an established therapy for drug-resistant focal epilepsy. The emerging implantable neural sensing and stimulating (INSS) technology enables simultaneous delivery of chronic deep brain stimulation (DBS) and recording of electrical brain activity from deep brain structures while patients live in their home environment. Long-term intracranial electroencephalography (iEEG) iEEG signals recorded by INSS devices represent an opportunity to investigate brain neurophysiology and how DBS affects neural circuits. However, novel algorithms and data processing pipelines need to be developed to facilitate research of these long-term iEEG signals. Early-stage analytical infrastructure development for INSS applications can be limited by lacking iEEG data that might not always be available. Here, we investigate the feasibility of utilizing the Deep Generative Adversarial Network (DCGAN) for synthetic iEEG data generation. We trained DCGAN using 3-second iEEG segments and validated synthetic iEEG usability by training a classification model, using synthetic iEEG only and providing a good classification performance on unseen real iEEG with an F1 score 0.849. Subsequently, we demonstrated the feasibility of utilizing the synthetic iEEG in the INSS application development by training a deep learning network for DBS artifact removal using synthetic data only and demonstrated the performance on real iEEG signals. The presented strategy of on-demand generating synthetic iEEG will benefit early-stage algorithm development for INSS applications.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Quality internal grants at BUT</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

  • ISBN

    978-1-6654-5258-8

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1736-1741

  • Publisher name

    IEEE

  • Place of publication

    Prague. Czechia

  • Event location

    Praha

  • Event date

    Oct 9, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article