Cellular Mechanotransduction: From Tension to Function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F18%3A00069321" target="_blank" >RIV/00159816:_____/18:00069321 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14110/18:00104174
Result on the web
<a href="http://dx.doi.org/10.3389/fphys.2018.00824" target="_blank" >http://dx.doi.org/10.3389/fphys.2018.00824</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fphys.2018.00824" target="_blank" >10.3389/fphys.2018.00824</a>
Alternative languages
Result language
angličtina
Original language name
Cellular Mechanotransduction: From Tension to Function
Original language description
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30105 - Physiology (including cytology)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000492" target="_blank" >EF15_003/0000492: Unveiling the molecular determinants of agingto design new therapeutics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Physiology
ISSN
1664-042X
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
July
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
—
UT code for WoS article
000437471900001
EID of the result in the Scopus database
—