Cell based AFM biosensensing for screening of pulmonary-drug related arrhytmic effects
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F21%3A00074466" target="_blank" >RIV/00159816:_____/21:00074466 - isvavai.cz</a>
Alternative codes found
RIV/65269705:_____/21:00074466 RIV/00216224:14110/21:00120083
Result on the web
<a href="http://dx.doi.org/10.37904/nanocon.2020.3745" target="_blank" >http://dx.doi.org/10.37904/nanocon.2020.3745</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37904/nanocon.2020.3745" target="_blank" >10.37904/nanocon.2020.3745</a>
Alternative languages
Result language
angličtina
Original language name
Cell based AFM biosensensing for screening of pulmonary-drug related arrhytmic effects
Original language description
Atomic force microscopy (AFM) combined with stem cell derived human cardiomyocytes (CM) enables dynamic follow-up of cardiac contractions (e.g. beating rate, contraction and relaxation times), simultaneously with other CM biomechanical properties. Today, majority of drugs entering clinical usage needs to be tested for adverse arrhythmic effects; nevertheless, the effects on cardiomyocyte contraction are not routinely employed, only when related to cardiac pathologies. AFM-based biosensor allows in-vitro disease modeling, but also enables to monitor the effect of CM-contraction affecting drugs. Until today only few selected drugs modulating contractility and spontaneous pacing were described in animal models. This work for the first time demonstrates that basic biomechanical parameters, such as average value of contraction force and the beat rate, represent valuable pharmacological indicators of different phenotypic effects on cells without genetic burden. The presented method is robust and has low computational requirements, while keeping optimal spatial sensitivity (force detection limit 200 pN, corresponding to 20 nm displacement). The cardiac stimulating activities of drugs utilized in pneumology as aminophylline, ipratropium, and salbutamol were tested. Stimulating drugs, e.g. methylxanthines and caffeine, presented aberrant cardiomyocyte response, confirming arrhythmogenic potential, and force related fluctuations. Quantification of spontaneous contraction irregularities and related contractility changes allow precise scaling of potential negative effects adding new safety level to clinically relevant drug testing. AFM combined with human CMs serve as robust real-time screening platform for effects of pulmonary drugs. Here we describe changes in CM contractility, which is hard to describe by other screening methods and was never tested with described medication.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings 12th International Conference on Nanomaterials - Research & Application
ISBN
978-80-87294-98-7
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
404-409
Publisher name
TANGER LTD
Place of publication
Ostrava
Event location
Brno
Event date
Oct 21, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000664505500069