All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F22%3A00077601" target="_blank" >RIV/00159816:_____/22:00077601 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2212877822000230?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2212877822000230?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.molmet.2022.101454" target="_blank" >10.1016/j.molmet.2022.101454</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids

  • Original language description

    Objective: Metabolic syndrome, obesity, and steatosis are characterized by a range of dysregulations including defects in ubiquitin ligase tagging proteins for degradation. The identification of novel hepatic genes associated with fatty liver disease and metabolic dysregulation may be relevant to unravelling new mechanisms involved in liver disease progressionMethods: Through integrative analysis of liver transcriptomic and metabolomic obtained from obese subjects with steatosis, we identified itchy E ubiquitin protein ligase (ITCH) as a gene downregulated in human hepatic tissue in relation to steatosis grade. Wild-type or ITCH knockout mouse models of non-alcoholic fatty liver disease (NAFLD) and obesity-related hepatocellular carcinoma were analyzed to dissect the causal role of ITCH in steatosisResults: We show that ITCH regulation of branched-chain amino acids (BCAAs) degradation enzymes is impaired in obese women with grade 3 compared with grade 0 steatosis, and that ITCH acts as a gatekeeper whose loss results in elevation of circulating BCAAs associated with hepatic steatosis. When ITCH expression was specifically restored in the liver of ITCH knockout mice, ACADSB mRNA and protein are restored, and BCAA levels are normalized both in liver and plasmaConclusions: Our data support a novel functional role for ITCH in the hepatic regulation of BCAA metabolism and suggest that targeting ITCH in a liver-specific manner might help delay the progression of metabolic hepatic diseases and insulin resistance.(c) 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30202 - Endocrinology and metabolism (including diabetes, hormones)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000492" target="_blank" >EF15_003/0000492: Unveiling the molecular determinants of agingto design new therapeutics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Molecular Metabolism

  • ISSN

    2212-8778

  • e-ISSN

  • Volume of the periodical

    59

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000794064300009

  • EID of the result in the Scopus database