All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Illuminating the mechanism and allosteric behavior of NanoLuc luciferase

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F23%3A00079698" target="_blank" >RIV/00159816:_____/23:00079698 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/23:00133132

  • Result on the web

    <a href="https://www.nature.com/articles/s41467-023-43403-y" target="_blank" >https://www.nature.com/articles/s41467-023-43403-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41467-023-43403-y" target="_blank" >10.1038/s41467-023-43403-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Illuminating the mechanism and allosteric behavior of NanoLuc luciferase

  • Original language description

    NanoLuc, a superior beta-barrel fold luciferase, was engineered 10 years ago but the nature of its catalysis remains puzzling. Here experimental and computational techniques are combined, revealing that imidazopyrazinone luciferins bind to an intra-barrel catalytic site but also to an allosteric site shaped on the enzyme surface. Structurally, binding to the allosteric site prevents simultaneous binding to the catalytic site, and vice versa, through concerted conformational changes. We demonstrate that restructuration of the allosteric site can boost the luminescent reaction in the remote active site. Mechanistically, an intra-barrel arginine coordinates the imidazopyrazinone component of luciferin, which reacts with O2 via a radical charge-transfer mechanism, and then it also protonates the resulting excited amide product to form a light-emitting neutral species. Concomitantly, an aspartate, supported by two tyrosines, fine-tunes the blue color emitter to secure a high emission intensity. This information is critical to engineering the next-generation of ultrasensitive bioluminescent reporters. NanoLuc luciferase is a popular bioluminescent enzyme, but the molecular details of its mechanism of action on luciferins such as coelenterazine remained elusive. Here the authors use, protein crystal structures and biochemical analyses to provide an atomistic description of its catalytic mechanism and allosteric behaviour.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Communications

  • ISSN

    2041-1723

  • e-ISSN

    2041-1723

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    7864

  • UT code for WoS article

    001111154200005

  • EID of the result in the Scopus database