All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of Spine Segmentation Algorithms on Clinical Data from Spectral CT of Patients with Multiple Myeloma

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00081573" target="_blank" >RIV/00159816:_____/24:00081573 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26220/24:PU149066

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-49062-0_34" target="_blank" >http://dx.doi.org/10.1007/978-3-031-49062-0_34</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-49062-0_34" target="_blank" >10.1007/978-3-031-49062-0_34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of Spine Segmentation Algorithms on Clinical Data from Spectral CT of Patients with Multiple Myeloma

  • Original language description

    This article presents an evaluation of spine segmentation models using clinical data obtained from multiple myeloma patients. The performance of the models is compared based on the classical Dice score. The results show that the Payer and nnU-Net models show the highest level of similarity in segmentation. However, when it comes to the challenging task of segmenting cervical vertebrae, the Payer algorithm provides more accurate results. On the other hand, the nnU-Net model achieves better results in cases of extensive vertebral deformation. We also observed that convolutional neural networks have problems in segmenting metal surgical implants. Research highlights the strengths and weaknesses of different models and can help select appropriate segmentation algorithms for specific clinical scenarios.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

  • Continuities

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    MEDICON 2023 AND CMBEBIH 2023, VOL 1

  • ISBN

    978-3-031-49061-3

  • ISSN

    1680-0737

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    309-317

  • Publisher name

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Sarajevo

  • Event date

    Sep 14, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001261436400034