Comparison of Spine Segmentation Algorithms on Clinical Data from Spectral CT of Patients with Multiple Myeloma
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00081573" target="_blank" >RIV/00159816:_____/24:00081573 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26220/24:PU149066
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-49062-0_34" target="_blank" >http://dx.doi.org/10.1007/978-3-031-49062-0_34</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-49062-0_34" target="_blank" >10.1007/978-3-031-49062-0_34</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of Spine Segmentation Algorithms on Clinical Data from Spectral CT of Patients with Multiple Myeloma
Original language description
This article presents an evaluation of spine segmentation models using clinical data obtained from multiple myeloma patients. The performance of the models is compared based on the classical Dice score. The results show that the Payer and nnU-Net models show the highest level of similarity in segmentation. However, when it comes to the challenging task of segmenting cervical vertebrae, the Payer algorithm provides more accurate results. On the other hand, the nnU-Net model achieves better results in cases of extensive vertebral deformation. We also observed that convolutional neural networks have problems in segmenting metal surgical implants. Research highlights the strengths and weaknesses of different models and can help select appropriate segmentation algorithms for specific clinical scenarios.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MEDICON 2023 AND CMBEBIH 2023, VOL 1
ISBN
978-3-031-49061-3
ISSN
1680-0737
e-ISSN
—
Number of pages
9
Pages from-to
309-317
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Sarajevo
Event date
Sep 14, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001261436400034