All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optical Characterization of Gadolinium Fluoride Films Using Universal Dispersion Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00177016%3A_____%2F23%3AN0000069" target="_blank" >RIV/00177016:_____/23:N0000069 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/23:00130861

  • Result on the web

    <a href="https://www.mdpi.com/2079-6412/13/2/218" target="_blank" >https://www.mdpi.com/2079-6412/13/2/218</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/coatings13020218" target="_blank" >10.3390/coatings13020218</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optical Characterization of Gadolinium Fluoride Films Using Universal Dispersion Model

  • Original language description

    The optical characterization of gadolinium fluoride (GdF3) films is performed in a wide spectral range using heterogeneous data-processing methods (the ellipsometric and spectrophotometric measurements for five samples with thicknesses ranging from 20 to 600 nm are processed simultaneously). The main result of the characterization is the optical constants of GdF3 in the range from far infrared to vacuum ultraviolet, both in the form of a table and in the form of dispersion parameters of the universal dispersion model (UDM). Such reliable data in such a broad spectral range have not been published so far. The GdF3 films exhibit several defects related to the porous polycrystalline structure, namely, surface roughness and a refractive index profile, which complicate the optical characterization. The main complication arises from the volatile adsorbed components, which can partially fill the pores. The presented optical method is based on the application of the UDM for the description of the optical response of GdF3 films with partially filled pores. Using this dispersion model, it is possible to effectively separate the optical response of the host material from the response of the adsorbed components. Several recently published structural and dispersion models are used for optical characterization for the first time. For example, a model of inhomogeneous rough films based on Rayleigh–Rice theory or asymmetric peak approximation with a Voigt profile for the phonon spectra of polycrystalline materials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/FV40328" target="_blank" >FV40328: Realization of layered systems with required spectral dependencies of reflectance and transmittance in the middle ultraviolet spectral range</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Coatings

  • ISSN

    2079-6412

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

    218

  • UT code for WoS article

    000938947900001

  • EID of the result in the Scopus database