All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Designing of SiO2 mesoporous nanoparticles loaded with mometasone furoate for potential nasal drug delivery: Ex vivo evaluation and determination of pro-inflammatory interferon and interleukin mRNA expression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00179906%3A_____%2F23%3A10458164" target="_blank" >RIV/00179906:_____/23:10458164 - isvavai.cz</a>

  • Alternative codes found

    RIV/62690094:18470/23:50020024 RIV/00216208:11150/23:10458164

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PGY_57lVqn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PGY_57lVqn</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fcell.2022.1026477" target="_blank" >10.3389/fcell.2022.1026477</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Designing of SiO2 mesoporous nanoparticles loaded with mometasone furoate for potential nasal drug delivery: Ex vivo evaluation and determination of pro-inflammatory interferon and interleukin mRNA expression

  • Original language description

    The main objective of the current research work was to synthesize mesoporous silica nanoparticles for controlled delivery of mometasone furoate for potential nasal delivery. The optimized sol-gel method was used for the synthesis of mesoporous silica nanoparticles. Synthesized nanoparticles were processed through Zeta sizer, SEM, TEM, FTIR, TGA, DSC, XRD, and BET analysis for structural characterization. The in vitro dissolution test was performed for the inclusion compound, while the Franz diffusion experiment was performed for permeability of formulation. For the determination of expression levels of anti-inflammatory cytokines IL-4 and IL-5, RNA extraction, reverse transcription, and polymerase chain reaction (RT-PCR) were performed. The MTT assay was also performed to determine cell viability. Synthesized and functionalized mesoporous silica nanoparticles showed controlled release of drugs. FT-IR spectroscopy confirmed the presence of the corresponding functional groups of drugs within mesoporous silica nanoparticles. Zeta sizer and thermal analysis confirmed the delivery system was in nano size and thermally stable. Moreover, a highly porous system was observed during SEM and TEM evaluation, and further it was confirmed by BET analysis. Greater cellular uptake with improved permeability characteristics was also observed. As compared to the crystalline drug, a significant improvement in the dissolution rate was observed. It was concluded that stable mesoporous silica nanoparticles with significant porosity were synthesized, efficiently delivering the loaded drug without any toxic effect.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30103 - Neurosciences (including psychophysiology)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Cell and Developmental Biology

  • ISSN

    2296-634X

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    JAN

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

    1026477

  • UT code for WoS article

    000918633300001

  • EID of the result in the Scopus database

    2-s2.0-85146515319