All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of P-glycoprotein and Cotreatment with Sofosbuvir on the Intestinal Permeation of Tenofovir Disoproxil Fumarate and Tenofovir Alafenamide Fumarate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00179906%3A_____%2F23%3A10471425" target="_blank" >RIV/00179906:_____/23:10471425 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11160/23:10471425

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SIRqEQOBXD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SIRqEQOBXD</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11095-023-03581-2" target="_blank" >10.1007/s11095-023-03581-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of P-glycoprotein and Cotreatment with Sofosbuvir on the Intestinal Permeation of Tenofovir Disoproxil Fumarate and Tenofovir Alafenamide Fumarate

  • Original language description

    Purpose We aimed to compare the effects of P-glycoprotein (ABCB1) on the intestinal uptake of tenofovir disoproxil fumarate (TDF), tenofovir alafenamide fumarate (TAF), and metabolites, tenofovir isoproxil monoester (TEM) and tenofovir (TFV), and to study the molecular mechanism of drug-drug interaction (DDI) between sofosbuvir (SOF) and TDF/TAF. Methods Bidirectional transport experiments in Caco-2 cells and accumulation studies in precision-cut intestinal slices prepared from the ileal segment of rodent (rPCIS) and human (hPCIS) intestines were performed. Results TDF and TAF were extensively metabolised but TAF exhibited greater stability. ABCB1 significantly reduced the intestinal transepithelial transfer and uptake of the TFV(TDF) and TFV(TAF)-equivalents. However, TDF and TAF were absorbed more efficiently than TFV and TEM. SOF did not inhibit intestinal efflux of TDF and TAF or affect intestinal accumulation of TFV(TDF) and TFV(TAF)-equivalents but did significantly increase the proportion of absorbed TDF. Conclusions TDF and TAF likely produce comparable concentrations of TFV-equivalents in the portal vein and the extent of permeation is reduced by the activity of ABCB1. DDI on ABCB1 can thus potentially affect TDF and TAF absorption. SOF does not inhibit ABCB1-mediated transport of TDF and TAF but does stabilise TDF, albeit without affecting the quantity of TFV(TDF)-equivalents crossing the intestinal barrier. Our data thus suggest that reported increases in the TFV plasma concentrations in patients treated with SOF and TDF result either from a DDI between SOF and TDF that does not involve ABCB1 or from a DDI involving another drug used in combination therapy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Pharmaceutical Research

  • ISSN

    0724-8741

  • e-ISSN

    1573-904X

  • Volume of the periodical

    40

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    2109-2120

  • UT code for WoS article

    001050523400002

  • EID of the result in the Scopus database

    2-s2.0-85168341718