All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

p53 isoforms regulate premature aging in human cells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00209805%3A_____%2F18%3A00077974" target="_blank" >RIV/00209805:_____/18:00077974 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41388-017-0101-3.pdf" target="_blank" >https://www.nature.com/articles/s41388-017-0101-3.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41388-017-0101-3" target="_blank" >10.1038/s41388-017-0101-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    p53 isoforms regulate premature aging in human cells

  • Original language description

    Cellular senescence is a hallmark of normal aging and aging-related syndromes, including the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), a rare genetic disorder caused by a single mutation in the LMNA gene that results in the constitutive expression of a truncated splicing mutant of lamin A known as progerin. Progerin accumulation leads to increased cellular stresses including unrepaired DNA damage, activation of the p53 signaling pathway and accelerated senescence. We previously established that the p53 isoforms Δ133p53 and p53β regulate senescence in normal human cells. However, their role in premature aging is unknown. Here we report that p53 isoforms are expressed in primary fibroblasts derived from HGPS patients, are associated with their accelerated senescence and that their manipulation can restore the replication capacity of HGPS fibroblasts. We found that in near-senescent HGPS fibroblasts, which exhibit low levels of Δ133p53 and high levels of p53β, restoration of Δ133p53 expression was sufficient to extend replicative lifespan and delay senescence, despite progerin levels and abnormal nuclear morphology remaining unchanged. Conversely, Δ133p53 depletion or p53β overexpression accelerated the onset of senescence in otherwise proliferative HGPS fibroblasts. Our data indicate that Δ133p53 exerts its role by modulating full-length p53 (FLp53) signaling to extend the replicative lifespan and promotes the repair of spontaneous progerin-induced DNA double-strand breaks (DSBs). We showed that Δ133p53 dominant-negative inhibition of FLp53 occurs directly at the p21/CDKN1A and miR-34a promoters, two p53 senescence-associated genes. In addition, Δ133p53 expression increased the expression of DNA repair RAD51, likely through upregulation of E2F1, a transcription factor that activates RAD51, to promote repair of DSBs. In summary, our data indicate that Δ133p53 modulates p53 signaling to repress progerin-induced early onset of senescence in HGPS cells. Therefore, restoration of Δ133p53 expression may be a novel therapeutic strategy to treat aging-associated phenotypes of HGPS in vivo.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Oncogene

  • ISSN

    0950-9232

  • e-ISSN

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    2379-2393

  • UT code for WoS article

    000431386000003

  • EID of the result in the Scopus database

    2-s2.0-85041897592