All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of Polycation Structure on Interaction with Lipid Membranes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F17%3A10364264" target="_blank" >RIV/00216208:11110/17:10364264 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1021/acs.jpcb.7b05248" target="_blank" >http://dx.doi.org/10.1021/acs.jpcb.7b05248</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcb.7b05248" target="_blank" >10.1021/acs.jpcb.7b05248</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of Polycation Structure on Interaction with Lipid Membranes

  • Original language description

    Interaction of polycations with lipid membranes is a very important issue in many biological and medical applications such as gene delivery or antibacterial usage. In this work, we address the influence of hydrophobic substitution of strong polycations containing quaternary ammonium groups on the polymer-zwitterionic membrane interactions. In particular, we focus on the polymer tendency to adsorb on or/and incorporate into the membrane. We used complementary experimental and computational methods to enhance our understanding of the mechanism of the polycation-membrane interactions. Polycation adsorption on liposomes was assessed using dynamic light scattering (DLS) and zeta potential measurements. The ability of the polymers to form hydrophilic pores in the membrane was evaluated using a calcein-release method. The polymer-membrane interaction at the molecular scale was explored by performing atomistic molecular dynamics (MD) simulations. Our results show that the length of the alkyl side groups plays an essential role in the polycation adhesion on the zwitterionic surface, while the degree of substitution affects the polycation ability to incorporate into the membrane. Both the experimental and computational results show that the membrane permeability can be dramatically affected by the amount of alkyl side groups attached to the polycation main chain.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30106 - Anatomy and morphology (plant science to be 1.6)

Result continuities

  • Project

    <a href="/en/project/GBP302%2F12%2FG157" target="_blank" >GBP302/12/G157: Dynamics and Organization of Chromosomes in the Cell Cycle and during Differentiation under Normal and Pathological Conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry B

  • ISSN

    1520-6106

  • e-ISSN

  • Volume of the periodical

    121

  • Issue of the periodical within the volume

    30

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    7318-7326

  • UT code for WoS article

    000407189200011

  • EID of the result in the Scopus database

    2-s2.0-85026921697