Lumped models of the cardiovascular system of various complexity
Result description
Purpose: The main objective is to accelerate the mathematical modeling of complex systems and offer the researchers an accessible and standardized platform for model sharing and reusing. Methods: We describe a methodology for creating mathematical lumped models, decomposing a system into basic components represented by elementary physical laws and relationships expressed as equations. Our approach is based on Modelica, an object-oriented, equation-based, visual, non-proprietary modeling language, together with Physiolibrary, an open-source library for the domain of physiology. Results: We demonstrate this methodology on an open implementation of a range of simple to complex cardiovascular models, with great complexity variance (simulation time from several seconds to hours). The parts of different complexity could be combined together. Conclusions: Thanks to the equation-based nature of Modelica, a hierarchy of subsystems can be built with an appropriate connecting component. Such a structural model follows the concept of the system rather than the computational order. Such a model representation retains structural knowledge, which is important for e.g., model maintainability and reusability of the components and multidisciplinary cooperation with domain experts not familiar with modeling methods.
Keywords
Lumped modelCardiovascular modelingModeling methodologyModelica
The result's identifiers
Result code in IS VaVaI
Alternative codes found
RIV/68407700:21230/17:00327584
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Lumped models of the cardiovascular system of various complexity
Original language description
Purpose: The main objective is to accelerate the mathematical modeling of complex systems and offer the researchers an accessible and standardized platform for model sharing and reusing. Methods: We describe a methodology for creating mathematical lumped models, decomposing a system into basic components represented by elementary physical laws and relationships expressed as equations. Our approach is based on Modelica, an object-oriented, equation-based, visual, non-proprietary modeling language, together with Physiolibrary, an open-source library for the domain of physiology. Results: We demonstrate this methodology on an open implementation of a range of simple to complex cardiovascular models, with great complexity variance (simulation time from several seconds to hours). The parts of different complexity could be combined together. Conclusions: Thanks to the equation-based nature of Modelica, a hierarchy of subsystems can be built with an appropriate connecting component. Such a structural model follows the concept of the system rather than the computational order. Such a model representation retains structural knowledge, which is important for e.g., model maintainability and reusability of the components and multidisciplinary cooperation with domain experts not familiar with modeling methods.
Czech name
—
Czech description
—
Classification
Type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30105 - Physiology (including cytology)
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biocybernetics and Biomedical Engineering
ISSN
0208-5216
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
4
Country of publishing house
PL - POLAND
Number of pages
13
Pages from-to
666-678
UT code for WoS article
000416067300005
EID of the result in the Scopus database
2-s2.0-85028844724
Basic information
Result type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
OECD FORD
Physiology (including cytology)
Year of implementation
2017